
Using Domain-Specific, Abstract Parallelism
Ira Baxter and Elaine Kant

Schlumberger Laboratory for Computer Science
8311 North RR 620

Austin, Texas, 78720-0015
baxterQslcs, slb. com, kant@slcs, slb. com

Abstract

Discovery of potential parallelism in low level code is difficult, especially in the absence of problem domain
knowledge. Au alternative is to explicitly represent maximal potential parallelism in atmtra_t program components.
A transformation system refines a program composed of such components into a concrete program. We discuss an
experimental system in which we are installing such facilities. An example refinement sequence is provided.

1 Introduction

Compiling problem-domain independent program representations for parallel architectures is often difficult
because of the need to infer opportunities for parallelism. Because safe inference of parallelisni must be con-
servative, the inferred parallelism is often considerably less than that actually available in the applications.

This problem leads to a demand for tools such as E/SP [SMD+89], ParaScope [BKK+89] and MIMDizer
[Cor90], which identify points of potential, but unverifiable, parallelism and query the programmer to de-
termine a less conservative version of the truth. Inference and query-the-programmer are both methods for
rediscovering the parallelism. Ali of this would be unnecessary if the knowledge of what was parallel at the
time of program construction were not lost.

An alternative approach we are pursuing is to capture the inherent parallelism (actually, absence of
execution ordering constraints) in an abstract program in a domain-specific fashion. Then a transformation
system would refine not only the program but also the parallelism information into the concrete program.
In this fashion both the expense of the conservative inference and the need to query the programmer are
minimized.

In this paper, we give a short example of an abstract domain-specific component whose full parallelism
is "refined away" (rather than rediscovered) until it is usable on a particular target machine. We also briefly
motivate the need for non-tree-structured internal representations.

2 Problem Domain

SINAPSE [KDMW90] [KDMW91] is an experimental tool to synthesize mathematical modeling programs for
a variety of similar applications. These have, to date, been primarily acoustic wave propagation problems,
typically used to validate geophysical models for oil exploration.

SINAPSE accepts specifications of typically 20 to 50 lines, and produces C, Fortran, or Connection Ma-
chine Fortran programs that solve the differential equations related to the problem domain by using a finite
differencing method. Resulting programs are typically 500 to 1500 lines in size; lines are often very dense.

A number of programs generated by SINAPS_. have produced useful scientific results for Schlumberger
modelers after some post-generation hand optimization. The work described here is part of research aimed
at automating that optimization.

Synthesizing modeling programs requires knowledge of the wave propagation problem domain, knowledge
about solution techniques for problems in that domain, general programming knowledge, and control knowl-
edge to sequence the synthesis process. This class of program provides many opportuniti_._ for data-parallel
computation [HS86]; consequently, knowledge of potential parallelism and when to use it is also useful.

93



3 Synthesis Process

User-specified algorithm schemas are refined by repeatedly replacing schema components with lower-level
schemas or parame_.er values. These component replacements are taken from knowledge bases selected by, or
computed directly from, the specification. Rather than being the initial abstract program, the specification
simply directs the choice of schemas and parameter values.

Algorithm schemas are stated in terms of a high-level programming language called "algSinapse," which
includes assignments, conventional control constructs, array and scalar computations, references to parame-
ters, and references to other algorithm schemas.

Generic programming knowledge as well as application domain knowledge is needed to produce efficient
programs. Much of the programming knowledge is in the form of algorithm refinements that expand con-
structs such as parallel enumeration or matrix multiplication into built-in constructs or a combination of
loops and scalar operations depending on the target architecture and language. Rather than having a runtime
library of special-case methods (e.g., different matrix multiplications for diagonal arrays), SXNAPSEderives
the special methods directly. This is accomplished by substituting representations, determined by explicitly
represented properties of interest (e.g., DIAGONAL-ARRAY or SYMMETRIC), for references to values, and
simplifying away unneeded operations and combining similar terms. This avoids the need to rewrite such

libraries for each new target language. The approach is made feasible by the use of Mathematica [Wolgl],
a symbolic manipulation language as an implementation platform. There are also a number of optimizing
transformations.

One of the problems of refining abstract schemas into real programs are inefficiencies introduced because
of necessarily conservative analysis of the original schemas. These come about simply because schemas, while
optimized maximally on an individual basis, may be more optimizable when combined.

One can resolve this problem in a number of ways, of which SINAPSE currently uses two:

• General purpose optimization techniques, and

• Special case algorithm schemas.

SINAPSE has an optimizer which moves static computations outside of loops. Abstract computations are
often placed inside a loop in an originating schema simply because domain knowledge tells us they are usually
loop-index dependent. Only when the expression is actually instantiated can we determine the actual loop
dependency. If domain knowledge tells us that some expression is always loop independent, then it can be
encoded outside the loop in the schema.

The optimizer simply moves blocks of code earlier into the computation as long as this is consistent with
the data-fl_w constraints. This often moves code outside of loops. The moved code is placed in parallel

with the earliest statement it can precede. Thus, a free side effect of running the code motioner is the
conversion of unnecessary sequencing constructs into parallel execution constructs. A special mechanism
detects when expressions dependent only on loop indices can be moved outside the loop. The values of these
expressions will be cached in a array. More specifically, storage for the array is allocated, code to fill the
array is generated outside the loop, and the cached values from the array are referenced in3ide the loop. We
plan to add a common-subexpression eliminator.

Considerable payoff also occurs when the problem or target domain dictates certain properties of the
code; one can then optimize a schema in advance of supplying it to SINAPSE, thereby avoiding the expense of
dynamic optimization at program synthesis time. A price is paid for this: manual encoding of such optimized
schemas at synthesizer-construction time, and conditioning the instantiation of the special case schemas on
the domain property.

94



4 A Weak Representation for Parallelism

SINAPSI_ currently represents abstract programs as tree schemas containing various control constructs rep-
resenting explicit classes of parallelism:

• seq[sl, s.]
Sequenci, ng of state-changing constructs si

• doSeq[s,j, ib, ub]
Iteration of star, ement s requiring sequential execution with index j in range lb... ub

• par[sl,sz,...,sn]
Arbitrary execution ordering of state-changing constructs si

• doPar[s, lbl,ubl], lh2,ub2],...,b'., rb.,ub.]]
Parallel execution of (possibly compound) statement s instantiated with simultaneous assignment of
loop indices ji

doPar provides much of the opportunity to generate data-parallel programs for the Connection Ma-
chine 2 (CM2), written in CM Fortran 90. As an example, the following construct:

doPar[A[j] -" B_] , k- Cb'],II", l,size(A)]]

is converted into l;he Fortran 90 array statement:

AI1: size(A)] = B[I: size(A)] • k - C[I: size(A)]

When the rank of a target array does not match the rank of a source, then the Fortran 90 intrinsic function:

SPttEtD( value, a_isNurnber)

is generated to expand the source array along necessary axes.
SINAr'SE algorithm schemas also allow the expression of computations on entire arrays, which pass through

virtually unchanged to CM Fortran. SINAPSE replaces entire-array operations with doPar equivalents when
the target is sequential Fortran 77. lt is then trivial to generate corresponding sequential code for any par
and doPar constructs.

An explicit concessiolt to data parallelism used in our representation is a variant of doPar:

makeArray_f(jl,j2, . . . ,jn), b'l, lbl, ubl], _2, Ib2, ub2], . . ., [jn, Ibn, ubn]]

which constructs a rank n array for which each element value is defined by the function f, usually instantiated
as an expression over the index variables.

While this seems to work well for pure data-parallel constructs (for SIMD target machines such as the
CM2), this representation is too weak to represent more general parallelism. Consider four computations A,
B, C, and D, with the requirements that A occur before C, and that B occur before C and D; the present
primitives can at best express only overly-constrained versions of the requirements, thus losing the ability
to explicitly represent the potential parallelism. The partial order in which finite-difference equations must
be evaluated is one such example. In general, tree-structured representations cannot capture partial orders
(without resorting to some kind of context-sensitivity).

5 Proposed Representation

We are considering using a variant of "Unified Computation Graphs" (UCGs) [WBS+91] to represent pro-
grams. Such graphs are ba_ed on simple data-flow graphs, with the addition of shared data, control-flow
arcs (similar o program dependence graphs [FOW87]) and "exclusion constraints" between nodes. Exclusion
constraints I revent two or more parallel activities from simultaneous execution, and are usually associated
with acce_, _ overlapping parts of a shared data structure.

In Figure 1, we show computations as bubbles, data- and control-flow as solid arrows, and exclusion

dependencies as a dashed arc with no arrows. Primitive computations in bubbles are represented as trees.

95



UCGs assume global shared data among computations, while pure dat_-flow assumes no shared data. We

have added a representation for data shared among particular nodes, and show the storage shared by two
computations with an enclosing dashed arc. Computations not sharing data with others are not necessarily
functional; each may still have internal state. Parallel-prefix operations may be represented either by reduc-
tion operators over data aggregates, such as the Fortran 90 SUNoperation, or explicitly via n-ary trees on
explicitly represented operands. We currently do not represent pipeline parallelism or multiple simultaneous
activations of each operator [AG82].

We mix notations by writing (sub)UCGs isomorphic to purely parallel (respectively sequential) constructs
as their textual par (respectively seq) equivalent.

5.1 Refinements on UCGs

A refinement is a type of transformation that introduces detail (i.e., removes possible models). Several
generic refinements of standard UCGs are possible:

Rc,,,n_, Refine a computation into a sub-UCG (Figure 2).

R1_ow Refine a data-flow carrying a complex data structure into multiple data-flows carrying parts of that
structure (composing this with the previous action produces data-parallel computations when data-flow
components are homogeneous).

Rab,t,-act Group parallelizable computations into a single computation.

R,,erge Merge a set of parallel computations into a single computation.

R_er, al,ze Sequentialize a pair of parallel activities by adding control-flow arc.

R, eq_,,ce Refine an exclusion constraint arc into a control-flow arc going in either direction.

New refinements possible because of the enriched representation:

R_to,-e Refine data-flow between nodes into control-flow plus shared storage.

Rco,zle,ce Coalesce several shared storage regions into one.

6 Example

In this section, we sketch the refinement of a domain-specific component into good CM2 code, given our
proposed representation.

We present an equivalent Fortran 77 code _agment first, abstracted _om a real modeling prGgram,
to ensure that the reader initially sees what a conventional compiler sees. A conventional compiler must
determine which of these steps can be executed in parallel, knowing nothing of the intent.

DO I00, ix=K+I,K+N

DO I00, iy=K+l,K+_

100 padarrayCix,iy)=muCix-K,iy-K)
<...lots of unrelated code...>

DO 128 iy=1,N

DO 128 ix=l,K
128 padarray(ix,iy) = padarray(K+l,iy)

DO 129 iy=l_N
DO 128 ix=N-K+I,N

129 padarray(iz,iy) = padarray(_-K,iy)
DO 132 ix=l,N

DO 130 iy=1,K

130 padarray(ix,iy) = padarray(ix,K+l)

DO 131 iy=N-K+I,N

131 padarray(ix,iy) = padarray(ix,N-K)

96



Computation Data/Control flow Exclusion

Dependency Shared data

Figure 1" Representation of Parallelism

97



132 CO_TI_JE

This code actually pads an N × N array (nu), producing an (N + 2, K) x (N + 2, K) array (padarray)

with a K-wide "taper" region along ali edges. This is a common operation in modeling codes on variables

representing properties of space when taper boundary conditions are used [IO81]. The intent is to fill the
taper boundary areas with copies of the nearest edge of the original array; a conceptual view of this operation

is provided in Figure 3. The resulting array has nine regions. The taper edges are filled with copies of the
corresponding edge of the original array; symmetry leads one to the conclusion that the corner regions of

the padded array must be filled with values from the closest corner of the array. Each region is defined as

the set of elements selected by the cross-product of a particular range of indices; the upper, left hand corner

has range [i, 1, K], [3', 1, K], etc.

We give an abstract program schema defining the domain-specific notion Pad(array), using case analysis
to determine in which region an element resides:

Pad [originalarray ,g] isSchema

_N :=AxisSize (originalarray) ;

makeArray [
case [

l<=i<=K and I<=j<=K: originalarray[l,1]; (* upper left corner *)

l<=i<=K and K+I<=j<=K+|: originalarray[l,j-K+l]; (* North side *)

' 1<=i<=K and K+|+I<=j<=|+2*K: originalarray[l,|]; (* upper right corner .)

K+I<=i<=K+| and I<=j<=K: originalarray[i-K+l,1]; (* West side *)

K+N+I<=i<=|+2*K and I<=j<=K: originalarray[l,1]; (* lower left corner *)

K+N+I<=i<=|+2*K and K<=j<=K+|: originalarray[|,j-K+l]; (. South side *)

K+N+I<=i<| and K+J+I<=j<=|+2*K: originalarray[|,N] ; (* lo.or right *)

K+I<=i<=K+| and K+|+I<=j<=J+2*K: originalarray[i-K+l,J]; (* East side .)

K+I<=i<=K+| and K+I<=j<=K+|: originalarray[i-K+l,j-K+1]; (* niddle *)

], (* case *)
Ii,I,I+2*K], tj,I,|+2*K]]

This schema provides for maximum (data) parallelism; every element can be computed independently,

and thus the entire computation takes only O(1) time on an appropriate architecture. It could be used by

SINAPsg whenever padding is required; no rediscovery of parallelism is required.

However, the computation would still be unneces_,arily inefficient on a SIMD machine such as the CM2,

for which a data parallel operation requires ali processing elements (PEs) to perform the same instruction

and then synchronize. Each PE must synchronously execute the entire case statement body. Assuming one
machine instruction for each operand and operator, each case requires about 15 instructions, so the nine
cases require about 13,5 instruction times.

We can lower this cost by eliminating runtime evaluation of the case bounds. The cases conveniently define

SIMD-compatible partitions of the instruction strearnvJ. SINAPSg assumes that a case construct preci_ly

covers its cases, with no overlap; thus ali case clauses may be executed in parallel:

seq[ N:=AxisSize(originalarray) ;

allocate(padarray,N+2.k,|+2*k); (. creates storage for padarray *)

pax[
doPar [padaxray Ii,j] :=originalarray Ii-K+ I,j-K+ I],

[i,K+I,K+N],[j,K+I,K+_J]; (* middle *)

doPax [padarra7 Ii,j] :=originalarray [i-K+l, I],

[i,K+I,K+N],[j,I,KJ]; (. West side *)

doPax [padarray tj,j] :=originalaxray [i-K+l,NJ,

[i,K+I,K+N],[j,K+N+I,J+2,K]J; (* East side *)

doPax [padarray tj,j] :=originalarray [I,I],

[i,I,K],[j,I,K]]; (* upper left corner *)

dopa/[padarray tj,j] :=originalaxray [I,j-K+I],

[i,I,KJ,[j,K+I,K+NJ]; (* North side *)

98



i

doPar[padarrayIi,j]:=originalarray[I,|],

[i,l,K],[J,K+7+I,|+2*K]]; (* upper right corner *)
doPar[padarrayIi,j]:=originalarray[7,I],

[i,K+|+I,7+2*K],[j,I,K]]; (* lo.er left corner *)

doPar[padarrayIi,j]:=originalarray[7,j-K+1],
[i,K+7+I,7+2*K],[j,K,K+N]]; (, South side ,)

doPar[padarrayIi,j]:=origlnalarray[7,7],

[i,K+7+l, and K+7+I,7+2*K]]; (. lo.er right *)
3; (, par *)

padarray] (* seq *)

Bach of these cases now maps directly onto a Fortran 90 array primitive, and each would execute in just a
few instructions on a CM2. However, the CM2 has only one set of data-parallel processors, so each "parallel"

case competes for the data-parallel processor resource. Static resolution oi"this resource contention requires
serializing access to the s_t oi"data-parallel processors, and consequently 9 units of time are actually taken.

This can be reduced to 5 (as in the original hand-coded fragment) by combining steps. Consider Figure 4;
in stage 1, after copying the original array (1 unit), we expand the copied array along the X-axis (1 unit in
both directions); in stage 2, we expand the expanded _.rray along the Y-axis (1 unit in both directions).

To make progress towards this reduction in effort, we apply the following refinements:

• Group (Rabstr, ct) some parallel activities, with the intention of merging them (/_er0e), and

• Order (Rser, at,,e) some parallel activities, to eventually ensure that certain properties are present when
needed.

The result is shown in Figure 5.

The activities so grouped can be combined into a single data-parallel primitive. This is because after
copying to the center, and filling east and west edges, we have entire edge rows ready to replicate vertically,
as shown in Stage 2 of Figure 4. Consequently we can rewrite the three steps:

pare
doPar[padarray[i,j]:=originalarray[I,I],

[i,I,K],[j,I,K]]; (* upper left corner *)
doPar[padarrayIi,j]:=originalarray[I,j-K+I],

[i,I,K],[j,K+I,K+7]]; (* 7orth side *)

doPar[padarrayIi,j]:=originalarray[I,7],

[i,l,K],[j,K+7+I,7+2*K]]; (* upper right corner *)
] (* par *)

as the single step:

doPar [padarrayIi,j] :=padarray[K,j],

[i,I,K],[j,I,7+2.K]];(* upper edge ,)

We similarly optimize the code for filling the lower edge.

99



On the CM2, copying from one array to another is cheap only if the copied array has the same size and
alignment in memory as the target. When the source is smaller than the destination, changing the alignment,
the communication costs are high (roughly 100 times slower than the aligned case!). We can do little about
the cost of copying originalarray. However, we need not suffer as great a cost when ft|ling the east and
west edges; we can take advantage of the fact that an aligned copy of the east edge of the original array
is present in the target array, and copy that instead. This optimization requires that we add additional

computation-ordering constraints (R, er_auze) to ensure that copy-original-to-center occurs before filling the
east or west edges. Having accomplished that, we can rewrite:

doPar [padarrayIi,j]:=originalarrayIi-K+I,I],

[i,K+I,K+N],[j,I,K]];(* West side *)

as:

doPa/[padarrayIi,j]:=padarray[i,K+I],
'[i,K+I,K+N].[j,I,K]];(* West side *)

Again, we can do the same for the east side, producing a computation in the form shown by Figure 6.

A final equivalence simplifies a set of parallel computations, each of which is connected to ali of their
descendants, into a simple sequence:

eeq[ N:=lxieSize(originalarray);
allocate(padarray,N+2*k,N+2*k);_* creates storage for padarray *)

doPar[padarray[i,j]:=originalarray[i-K+1,j-K+I],
[i.K+i.K+_],[j.K+I,K+N]]; (* middle *)

par[doPar[padarray[i,j]:--padarray[i,K+I],
[i,K+I,K+|],[j,I,K]]; (* West side *)

doPar[padarray[i,,j]:=padarray[i,K+N],
[i,K+I,K+N],[j,K+N+I,N+2*K]];(* East side *)

];
par [doPar [pads/ray [i, j] :--padarray [K+I, j],

, [i.I,K],[j_I,N+2*K]]; (* upper edge *)
doPar[padarray[i,j] :=padarray[K+N,j],

[i,K+II+I,7+2*K], [j,l,7+2*K'I] ; (* lower edge *)
];

padaxray] (* seq *)

At th_ present 'time, SINAPSE represents the Pad component in essentially this form, rather than refining
it from a more abstract description.

At ft1al code-generation time, we generate code in any order consistent with the partial order over the
computaLions and produce the following CM2 Fortran 90 code:

C c_py original array
padarray(K+I:K+N,K+I:K+7)=mu(1:7,1:7)

C _ill Westiedge
+adarray(K 1:I+7,1:K)=SPREAD(padarray(K+l:K+N,K+I) 2)

C Fill East edge

padarray(K+1:K+N,K+7+I,:7+2*K)=SPREAD(padarray(K+1:K+N,K+N,2)
C j, !_illupper boundary

]_adarray:'(l:K,I:7)=SPREAD(padarray(K+I,I:7),I)
C Fill lower boundary

padarray(K+N+I:7+2.K,1:7)=SPREAD(padarray(K+N,1:ll),I)

lt is interesting to compare this to the original hand-generated code. At no point must we rediscover
the parallelism from a complex, highly optimized target language code, as done by conventional compilers.
The same efficiency has been achieved from an abstract specification that could be used to generate code for

100



multiple architectures and languages. On a MIMD machine with low communication costs, we could assign
one processor per result-array element, and specialize the case statement for that processor at synthesis
time, providing effectively unit time execution of the padding operation. For a high-communication cost
MIMD machine, we might refine the original component into 9 parallel tasks with no shared storage, and a
final assembly step.

Since we avoid the discovery process, we also avoid the requirement to harness the often necessary problem
domain knowledge to aid this process. Conventional compilers do not have this knowledge, and thus the
application programmer must be somehow brought into the process, making compilation partly manual.

7 Lessons

For the CM2, a good strategy for generating code seems to be:

• Represent computations with functional code fragments expressir g data parallelism over regions (this
should allow us to target other parallel architectures _ weil).

• Convert the functional fragments to side-effecting fragments over the same regions.

• Reduce operation count by merging parallel data-parallel operations on adjacent regions.

• Reduce communications cost by aligning data.

For data-parallel architectures with regular communication topologies, misaligned data in operations can
be very expensive. A model of the communication costs would help to focus attention of the synthesis system
on points needing optimization. The actual optimization can be accomplished by copying to an aligned array
(creating a singly-assigned temporary variable) and allowing code motion to move the copy step to a point
where the copy is only evaluated once.

8 Conclusions

We have found tree-structured representations of parallelism to be overly constraining, and are moving
towards representations including partial orders. Such representations will allow us to both directly encode
domain-specific components with maximal parallelism, and hence enable us to perform optimization and
resource assignment based on the potential parallelism.

SINAPSE is also being enhanced in several other areas. More detailed knowledge about problem domains
such as 3D ultrasonic wave propagation is being added. Solution techniques such as finite-element methods
as alternatives to finite differen-ing are contemplated. We are currently adding programming knowledge
about multiple target languages. We hope to eventually generate production quality modeling programs for
parallel machines.

References

lAG82] Arvind and Kim P. Goestelow. The U-Interpreter. Computer, pages 42-49, February 1982.

[BKK+89] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn McKinley, and Jaspal Subhlok.
The ParaScope Editor: An Interactive Parallel Programming Tool. In Proceedings of Supercom-
puling '89, pages 540-550. ACM Press, November 1989. ACM Order Number 415892.

[Corg0] Pacific-Sierra Research Corporation. The MIMDizer User's Guide. Pacific-Sierra Research Cor-
poration, 12340 Santa Monica Blvd, Los Angeles, CA 90025, 1990.

[FOW87] Je_.nne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence Graph
and Its Use in Optimization. A CM Transactions on Programming Languages and Systems,
9(3):319-349, July 1987.

[tlS86] W, Daniel Hillis and Guy L. Steele. Data Parallel Algorithms. Communications of the ACM,

29(12):1170-1184, December 1986.

i01



[IO81] Moshe Israeli and Steven Orszag. Approximation of Kadiation Boundary Conditions. Journal
of Computational Physics, 41:115--135, 1981.

[KDMW90] Elaine Kant, Francois Daube, William MacGregor, and Joseph Wald. Automated Synthesis of
Finite Difference Programs. In Symbolic Computations and Their Impact on Mechanics, PVP.
Volume P05. The American Society of Mechanical Engineers 1990, New York, NY, 1990. ISBN
0-791800598-0.

[KDMW91] Elaine Kant, Francois Daube, William MacGregor, and Joseph Wald. Scientific Programming
by Automated Synthesis. In M. Lowry and R. McCartney, editors, Automating Software Design.
AAAI Press, 1991. To appear.

[SMD+89] K. Sridharan, M. MeShea, C. Denton, B.Eventoff, J. C. Browne, P. Newton, M. Ellis, G. Gross-
bard, T. Wise, and D. Clemmer. An Environment for Parallel Structuring of Fortran Programs.
In E.C. Plachy and P.M. Kogge, editors, Proceedings of 1989 International Conference on Par.
ailel Processing, pages 98-106, 215 Wagner Building, University Park, PA 16802, August 1989.
The Penn State Press.

[WBS+91] John Werth, James C. Browne, Steve Sobek, T. J. Lee, Peter Newton, and Ravi Jain. The
Interaction of the Formal and the Practical in Parallel Programming Environment Development:
CODE. Technical Report TR-91-09, Department of Computer Science, University of Texas at
Austin, April 1991.

[Wo191] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addision-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1991. Second Edition.

L

i

i

102



Figure 2: Refining node B

103



I
aaa a N dl ddd

aaa a N d _ ddd
aaa a d ddd

.i

,,, aaa a N d ddd

Original
WWW W Array E EEE

bbb b ,, S c ccc

,,/
r I1bbb J b S c ccc

bbb b S c ccc
bbb b S c ccc

Figure 3: Padding an array by filling new boundaries with copies of edges

104



aaa a N d ddd

O-- Copy of __p.
WWW W Original E EEE

Array

bbb b S c ccc

Stage 1

aaa a N d ddd
aaa a N d ddd

aaa a _ d dd_
I e
|

aaa : a N d | ddd|
e. :
a |

: :
o

o

: Copy of ,:
|

WWW : W Original E i EEE
.' Array :
0 |

| e
| e

: :
bbb ': b S c : ccc

e |

I I

: :
| l

bbb I b S c : ccc
I

bbb | b S c : ccc
_ :, _ _ _ ; ccc

Stage 2

Figure 4" Padding operation optimized for Connection Machine

105



Figure 5: Refining parallel padding

106



Figure 6: Final representation of padding for data parallel machine

107


