
C A S E

D e s i g n
M a i n t e n a n c e

Lditional maintenance has
proven difficult in the absence of design information [19]; maintainers often
spend considerable energy trying to recover this design information before
making changes [15]. Capture and reuse of certain kinds of design informa-
tion should consequently improve the maintenance process. Updating the
design information is as important as revising the software itself, for the revised
design information is necessary for further maintenance. Four major software
engineering efforts that ended in disaster precisely because trying to main-
tain their designs was perceived as impractical are described by [23]. Conse-
quently, each design was abandoned and the projects spiraled into chaos.

Rather than emphasize software
maintenance, we suggest that design
maintenance become the key focus,
with programs being easily derived
from a complete design. The details
of our work lay foundations for
such design maintenance systems
(DMS). This article sketches such a
system. In particular, it defines the
kinds of information such a system
must retain and a particular ap-
proach to capture and modify that
information. For more details, the
reader is referred to [6].

We believe that productivity ad-
vances in software construction and
maintenance depend on automa-

tion, which, in turn, depends on
formalization. Our approach fo-
cuses on theories and mechanisms
necessary to allow formal mainte-
nance deltas to be integrated into
software systems constructed by
rigorous, if not completely auto-
matic, means. Such deltas express
desired changes in program func-
tionality, performance, and imple-
mentation technology. Figure 1
shows a life cycle model establishing
the context for a DMS. Most of the
mechanisms are concerned with

comparing the existing artifact with
some ideal, and producing a main-
tenance delta describing the error.

I f one had a design maintenance
system based on integrating formal
deltas, then the life cycle notions of
design/coding phases and mainte-
nance phases become indistinguish-
able. Software would be con-
structed by incrementally revising a
current design according to a con-
tinuous stream of maintenance del-
tas generated by comparing ex-
pected consequences of the current
design with customer desires and
available implementation technolo-
gies.

COMMUNICATIONSOFTHE AlUM/April 1992/Vol.35, No,4 ~ 3

FIGURE 1. Incremental evolution by delta Integration

Our particular approach to a
DMS requires that:

• the software system be formally
specified;

• its implementation be derived
transformationally;

• the justification for the imple-
mentation be captured;

• desired maintenance deltas be
formally specified;

• suitable tools for design justifica-
tion modification exist.

Given this background, a DMS
requires:

• a representation for programs
• a transformation engine
• an agenda-oriented metapro-

gramming language
• a representation for the justifica-

tion
• justification revision mechanisms,

which we call delta integration
procedures

We address these in turn, with
the bulk of this article being de-
voted to delta integration proce-
dures.

Sof tware Construction Model
Conventional software construction
almost invariably loses two critical
classes of design knowledge: the
problem specification, and the de-
sign justification. The justification

demonstrates that the implementa-
tion truly solves the problem stated
by the specification. This knowl-
edge is lost because of the informal
nature of the construction process,
and its dependence on smart agents
(programmers) whose design
knowledge and activities are largely
contained in the agents, rather than
in a formal database.

We choose formal transforma-
tion systems as a basis for a formal
construction methodology. Such
systems accept formal specifications
(predicates defining functionality
and performance goals to be
achieved) and apply transforma-
tions to the specification to con-
struct the final program. We use a
library of heuristic methods coded
in a Transformation Control Lan-
guage (TCL) to control the applica-
tion of implementing transforms.
Each method formally relates a de-
sign plan, consisting of some set of
activities ("how"), to a design pur-
pose which states the effect ("what")
the plan achieves. "How" is stated
in the form of plans for applying
specific transformations or other
methods in the form of nonlinear
plans (sets of actions and explicit
sequencing information about their
order of execution [8]). "What" is
stated as predicates on arbitrarily
defined performance measures

over program regions. A set of
TCL methods is used to non-
procedurally decompose the speci-
fication into solvable subproblems
with their own specifications. The
plans from methods chosen for a
particular decomposition are exe-
cuted to actually solve the subprob-
lems.

Thus a set of TCL methods cap-
ture generative design knowledge.
It is not design knowledge for a
particular problem, but for a class
of similar problems. Such knowl-
edge is not only crucial to initial
implementation, but is also neces-
sary to regenerate portions of a re-
lated program resulting from a de-
sired change.

Transformation System Model
Our particular transformational
model is summarized in Figure 2.
This model covers many of the ex-
Isting transformation systems (CIP
[5], MEDUSA [16], TAMPR [7],
Draco [18], TI [14], REFINE [20,
22]). Practical specifications have
two parts, (f0, Go), which we shall
motivate shortly. A number of sup-
port libraries provide the necessary
technology to implement the speci-
fication. Members ci of a library of
transforms Clibrary a r e applied to
convert an abstract operational
specification into a concrete pro-
gram. Performance measures are
used to determine what properties

1 4
April 1992/Vol.35, No.4/COMMUNI~ATIONS OF THE ACM

C A S E

a partially transformed program
has, and produce results from a
range specified by performance
values. Subsumption relations de-
fine the notion of "at least as good
as" over the measured perfor-
mances. Library predicates com-
bine performance measures and
subsumption relations to define in-
teresting levels of performance.
The method library contains plans
for applying transforms to achieve
known performance levels for pro-
gram regions.

Specifications
A transformation system requires
that we somehow specify what pro-
gram we desire. Such specification
capabilities are also needed for de-
scribing the effects of transforma-
tional plans. The most general
form of a specification is a predi-
cate over programs, which we de-
note G.

Suppose we have two kinds of
performance measures used to
specify programs, functionality and
computational complexity. A full
specification of a sorting program p
might then be:

G =- sorted(p(x)) A complexity(p(x)) =
O(length(x) • log(length(x)))

As a practical matter, transforma-
tion systems often avoid specifica-
tion of functionality as a predicate
by requiring, instead, an opera-
tional description (i.e., an abstract
program) whose semantics satisfy
the desired functionality. Thus one
might specify the functionality f0 of
p by the operational program
sort(X), whose semantics are defined
as sorted(sort(x)), with another predi-
cate Go containing the balance of
the predicate G. The mixed specifi-
cation (f0, Go) for p is then

(sort(X), complexity(p(x)) =
O(length(x) . log(length(x))))

The transformation system then
need only apply correctness-
preserving transformations to the
program f0, such that the other per-
formance goals Go are achieved.

Transforms, kocators and
Transformations
We define a transform to be any

function which maps programs into
programs. Often, a transform is
applied to a particular place of a
larger program; we designate such
places with locators. We call the ap-
plication of a transform t at place
a transformation and denote it as t e.
I f we use a correctness-preserving
transform, we generally use c
rather than t. Any particular pro-
gram representation will determine
how the transforms and the loca-
tors are represented. A common
program representation is an ab-
stract syntax tree; tree transforms
are represented by pairs of trees
containing pattern variables, and
locators are represented by paths, a
possibly empty sequence of integers
that describe how to navigate f rom
the root of the tree to the root of a
subtree where the tree transform
will actually be applied. Each ele-
ment of a path selects a numbered
branch, counting from left to right.
We denote tree transformations by
writing

pattern ~ pattern@(path)

Figure 9 shows several such tree
transformations, written as linear
strings with ?letter as pattern vari-

ables, and the effect of applying
them to particular trees. A differ-
ent type of transformation is a re-
finement, which atomically maps
entire programs at one level of ab-
straction to another, and is shown
vertically in Figure 10. Being ap-
plied everywhere, refinements do
not need a locator.

Transformational Planning
Components
Multiple transforms may apply to a
program; in the case o f sort, it may
be implemented by refining it into a
bubblesort or a mergesort (Figure
3). TCL provides ways of choosing
transformations that produce de-
sired effects, by providing a lan-
guage for stating both procedural
and nonprocedural actions for
achieving such effects. A TCL
method is a plan for achieving an
explicit performance property,
stated as a plan postcondition, over
some portion of a program. Proce-
dural actions in plans are those to
be taken by the transformation sys-
tem, usually the application of a
transform (APPLY) at a designated
place in the program, the invoca-
tion of a named set of actions
(CALL), or the determination of a

FIGURE 2. Transformation system controlled by Methods.

COMMUNICATIONS OF THE ACM/April 1992/Vo1.35, No.4 7 S

~ A S E

place or region relative to another
(LOCALE). Nonprocedural actions
are goal-oriented statements of

FIGURE 3. Transforms that
Implement sort

purpose, to be achieved by consult-
ing a library of existing TCL meth-
ods for relevant plans. The
postcondition states an expected
property of the program after
the method's actions have been
applied. Figure 4 shows a TCL
m e t h o d ~?~mergesort for implementing
a provably "n log n" procedure for
sort by refining it into a merge sort,
with performance constraints
(ACHIEVE) on the implementa-
tions of the components of the
merge sort. The method plan is to
sequentially (SEQ) apply the re-
finement transform, producing a

FIGURE 4. A TCL method Implementing sort with O(n In n) performance

FIGURE 5. Transformational design history Including unfolded design plans

locator lvo for the refined code, and
then to ensure (PLAN) that the var-
ious parts of the refined code are
implemented correctly. A partial
order on PLAN steps is generally
needed to specify the essential se-
quencing requirements on the
transformation process; SEQ is just
a specialized type of plan in which
all steps must be executed in a par-
ticular linear order. In the exam-
ple, sequencing of the subplan steps
is not needed, as long as all plan
steps succeed. Failure o f any part o f
the plan causes the method to fail;
backtracking allows the transfor-
mation system to try other meth-
ods.

Design C a p t u r e
Design capture requires that we
know:

• What was desired--specification
• How it was achieved--imple-

mentation actions

• Why the implementation works- -
justification

Use of a transformation system,
plus a transformational planning
language such as TCL, allows us to
capture this information. The for-
mal specification tells us what is in-
tended and is trivial to capture. The
sequence o f transformations actu-
ally applied tell us how the gener-
ated program was constructed, and
is captured as a linear derivation his-
tory 1. The motivation for applica-
tion of each transformation is cap-
tured by storing a trace of the
nonprocedural unfolding of goals
during the course of execution of
the TCL methods. We call such a
trace a design history. Encoding
alternative decompositions for
(sub)specifications as TCL methods
captures design alternatives.

Figure 5 shows an abstract design
history (DH). The conceptual speci-
fication G is written as a mixed
specification (fo, Go). The func-
tional specification portion f0 is
transformed repeatedly, producing
intermediate specifications f,, and

IThe derivation history can be stored nonline-
arly, but that has little effect on our theory.

' ! 6 April 1992/Vo1.35, No 4/COMMUNICATIONS OF THE ACM

C A S E

eventually the final program fa.
The performance goal Go is decom-
posed by selection of subgoals
achievable by TCL methods, that in
turn eventually provide the needed
transformations. Goal nodes in the
design history are called agenda
items, because those on the frontier
of an incomplete design history
represent uncompleted actions or
further goals to be achieved. Ar-
rows between specification nodes
represent the transformations
which were applied. The leaf nodes
plus transformations constitute a
part of the design history called a
derivation history. A crucial detail
of the derivation history is not only
which transform were applied (ci),
but the locators ei indicating where
they were applied. The design his-
tory also records dependencies on
the order of execution of agenda
items.

Design Ma in tenance
One reason conventional software
maintenance is difficult is that the
kind of information present in a
design history is missing. The only
information the conventional main-
tainer possesses with certainty is the
final program fG- Much of a main-
tainer's work consists of informally
reconstructing the relevant portion
of the design information, even
before a change is made. To make a
change, one modifies fc directly to
produce f~. The next maintainer
must repeat this laborious process
with f~. Such reconstruction also
brings with it the frequent problem
that the rediscovered design infor-
mation is incorrect, which intro-
duces faulty assumptions and con-
sequently, bugs into the maintained
program. Conventional software-
engineering practices can help alle-
viate this problem, but since most
design documentation is informal,
not directly or causally coupled to
the code, and not of primary inter-
est to the end customer or corpo-
rate management, the presence of
such documentation only slows the
slide into code-only maintenance.
Such design information is aban-
doned when the maintainers per-

FIGURE 6. Updating design according to

ceive the code to be more accurate
than the documentation. It is our
contention that focus on maintain-
ing the code eventually leads to loss
of the design.

Rather than focus the mainte-
nance process on the end code, our
approach is to maintain the design,
and derive the program from the
design. This ensures that the design
stays up to date, because it is the
primary artifact.

In a transformational context,
the problem of design maintenance
is one of updating the specification,
the derivation history, and the de-
sign history in a way consistent with
any new desire, stated as a mainte-
nance delta (Figure 6). The imple-
mentation is easily generated by
sequentially applying all the trans-
formations in the revised derivation
history to fD.

Maintenance Deltas
Before making a change, the de-
sired change must somehow be
codified. Traditional maintenance
classifies change types into perfec-
tive, adaptive, and corrective [14, 25].
Although this classification may be
useful to management, it is of little
use to the maintainer in guiding the
modification process.

By enumerating the inputs of a
formal transformation system, we
can exhaustively and formally de-
fine the types of formal mainte-

maintenance delta

nance deltas that can affect the out-
puts (i.e., the implemented
program). We can then use knowl-
edge of how a transformation sys-
tem operates to define procedures
for handling each type of delta.

Deltas come in two fundamental
varieties: specification deltas (those
that affect the problem definition)
and support deltas (those that af-
fect how the solution is imple-
mented). Specification deltas model
understanding of dissatisfaction
with the presently implemented
program. Support deltas model
improvements over time of the
expertise of the developers. We
denote the type of a delta by Atyt, e '
and a particular instance delta by
~type. For our particular transforma-
tion system model we found the
types of maintenance deltas shown
in Figure 7. (See box for explana-
tion of all the delta types covered by
our model.)

We believe that the majority o f
deltas are specification deltas: Af,
those that describe changes in de-
sired system function, and Ac, de-
scribing change in desired perfor-
mance.

Each type of maintenance delta
has a specific representation. A nice
synergy with transformation sys-
tems is that a functionality delta 6/
can be represented directly as a
(noncorrectness-preserving) trans-
formation, t e. A performance delta

COMMUNiCATiONS OF THE ACM/April 1992/Vol.35, No.4 7 7

I : A S E

aa can often be represented as a
pair of sets of per formance predi-
cates, Ge, removing per formance
constraints, and G~, adding new
per formance constraints. We show
procedures for integrat ing such
deltas into a design in the following
section; we have procedures for in-
tegrat ing all the delta types.

Integrating a Delta
into a Design History
Design maintenance must start with
a design history. We can construct
one from scratch by runn ing a
t ransformational implementat ion
on a chosen specification, or, as a
last resort, by reverse-engineer ing
such a history from an existing sys-
tem [3]. Since we believe that gen-
erat ing such a history is expensive,
because of the need for the trans-
format ion system to consider many
implementat ion alternatives, we
almost always use a revised history
from a previous design mainte-
nance step. Given a part icular
maintenance delta, the problem
then becomes one of revising the
existing history, using the transfor-
mation system as little as possible.

We do not address the question
of how a maintenance delta is cho-
sen, or how to handle justifications
for the part icular delta. Because the
rate at which problems are detected
with implemented software can
exceed the rate at which such prob-
lems are resolved, a number of in-
dividual maintenance deltas are
frequently bundled together as a
single composite delta. While such
composite delta may be processed
by breaking it into its individual
parts and processing each sequen-
tially, there is economy in the de-
sign maintenance process if the
composite delta is handled as a
batch, in that many interacting ef-
fects of the changes are handled at
once. However, in this article we
will consider only individual main-
tenance deltas.

Revising the specification com-
ponent of design information is
simple: apply a specification delta
to the current specification. Sup-
por t deltas are appl ied to the trans-

format ion system components; they
do not affect the statement of the
specification, but can affect its
meaning or implementat ion.

What remains is to revise the de-
sign history to be consistent with
whatever delta has been applied.
This is accomplished by:
1. rear ranging and pruning the

derivat ion history part of the
design history according to the
delta,

2. p runing away parts of the design
history which no longer serve a
useful purpose,

3. using the s tored TCL methods

to regenerate any liiL~,mplete
part of the design history.

The detailed mechanics of the first
two steps are de te rmined by the
type of the delta. The general
mechanisms are similar. The re-
generat ion process uses the trans-
formation system.

Revising and Pruning Derivation
Histories
A derivat ion history represents a
part icular trajectory th rough an
implementat ion space from a func-
tional specification to a solution.
Often many other equivalent tra-

Types o f M a i n t e n a n c e D e l t a s

P e ~ r m a r
mance deRa
ther too !oo
application,
a t a ~asOm

78 April 1992/Vol.35, No.4/COMMUNICATIONS OF THE ACM

= A S E

jectories from the same specifica-
tion to the same solution may be
obtained by rear ranging the se-
quence of the transformations.
Given a part icular delta, an existing
derivation history can be rear-
ranged into two parts, much like
separat ing oil and water. The first
part consists of those t ransforma-
tions that are still legitimate in the
face of the part icular delta; the sec-
ond part consists of t ransforma-
tions (and their dependents) that
conflict with the delta.

We determine the preservability
of an individual t ransformation of

the derivation history by at tempt-
ing to prove that it "commutes"
with the delta. I f it does, application
of the delta can be delayed past the
preservable t ransformation. Such
proofs often succeed, and are even
very efficient, because the transfor-
mations and deltas in programs of
modera te or larger size tend to be
appl ied far "apart" in the program,
in terms of purpose or effect. This
is one reason that most code in
maintained programs does not
change. Special techniques are used
on t ransformations and deltas that
are appl ied near one another;

sometimes both the preserved
t ransformat ion and the delta must
be adjusted to account for their
mutual interference, extending the
notion of "commutes." An interest-
ing example of this is pushing a
delta th rough a t ransformation that
changes abstraction levels (e.g., a
t ransformat ion from abstract
lambda calculus into machine code
can map a lambda calculus delta
into a machine code delta). I f our
conservative proof fails, we banish
the offending t ransformat ion and
its dependents to the second part of
the derivat ion history.

The second par t of the deriva-
tion history is reuseless with respect
to the delta, and must be removed.
The first part is a legitimate deriva-
tion history for a partially im-
p lemented p rogram and can be
preserved intact. Addit ional trans-
formations may be needed to fill
out the derivation history and ob-
tain a complete implementat ion;
but first, the remaining transfor-
mations must be revalidated. We
will re turn to this topic later. The
remainder of this section is devoted
to showing how a derivation history
can be revised given a part icular
functional delta, 6f. The mecha-
nism can be used as a component of
o ther delta propagat ion proce-
dures.

Unders tanding the relationship
of a presently existing derivation
history to its revised version helps
clarify our procedures. Applying a
change 6f (shown as 60) to the func-
tional par t of a specification com-
pletely changes the implementat ion
space from that off0 to f6, in which
the new implementat ion must be
found (Figure 8). In one sense, the
original derivation history is en-
tirely irrelevant, requir ing an en-
tirely new derivation to be con-
structed in the new space. In
another sense, there should be a
close analog of the original path in
the new space.

From the beginning of the new
path (f6), the t ransformations from
the original implementat ion space
can be tr ied sequentially. Each ap-
plicable t ransformat ion can still be

COMMUNICATIONS OF THE ACM/April 1992/Vol.35, No.4 7 9

g A S E

FIGURE 7. Types of delta induced by transformation system model

legally appl ied (as exemplif ied by
c e~ and ce2). Transformat ions that
no longer apply (such as c~ s) could
simply be d r o p p e d (naive replay),
leaving the applicability of their
successors (c e4) in doubt. We depar t
from naive replay by using a more
sophisticated technique to preserve
many successor transformations: I f
an inapplicable t ransformat ion
commutes with its successor, we can
delay applicat ion o f the inapplica-
ble one and a t tempt to preserve its
successor (note that ce44(ces(fz))=

f c = c~6(ce4S(f2)); this allows us to
propose ce4 ~ when c~ s fails to be pre-
servable). Since the commutativity
of t ransformations depends on
their semantic propert ies, such
commutat ion fails only if there is a
true o rde r dependency on trans-
formations.

We revise a derivat ion history by
repeatedly applying either a delay
or preserve action to each individual
t ransformat ion it contains.

Delaying a transformation: We can
often de te rmine that a part icular
t ransformat ion in a derivat ion his-
tory cannot be preserved. We can
revise the derivat ion history to
delay its applicat ion as long as pos-
sible. A primitive for accomplishing
delay is the notion of swapping two
sequential t ransformations, in
o rde r to delay the application of the
first one. Given a swap mechanism,
we may repeatedly swap a trouble-
some t ransformat ion down a deri-
vation history. Delaying the appli-
cation of a t ransformat ion as far as
possible is called banishment.

Swapping t ransformations often

requires a generalized kind of com-
mutativity. The effect we desire is
given a derivat ion history f ragment
ce2(@(p)), we need to find a new
f ragment cei(ce~(p)) = ceg~(ce~(p)),
such that c~ ~ is known to be preserv-
able. We can then replace the origi-
nal f ragment with the new frag-
ment, effecting a unit delay of ci by
changing its locator. We accomplish
this by comput ing candidate Cs and
testing for equivalence of the com-
position of the original pair with
the composit ion of the swapped
pair. An example for tree transfor-
mations is shown in Figure 9, dem-
onstrat ing that applicat ion of the
distributive law can be delayed past
application o f the commutat ive law
by revising the locators on both,
without changing the effect. When
such a swap cannot be computed,
then the t ransformat ion has been
delayed as far as practical, and no
fur ther a t tempt is made to delay its
applicat ion fur ther down the deri-
vation history.
Preserving a transformation:
Given a functionality delta 6, we
often want to de te rmine if a trans-
format ion c/e from a derivat ion his-
tory can be preserved. I f we can
find another pair of t ransforma-
tions 6' and c e' that preserve the ef-
fect of 6, then we can reuse the ap-
plication of ci. This is formalized as
cf'(a(/~)) = a ' (ce(~)) .

FIGURE 8. Changing functionality: preservation of path across Implementation

8 0 April 1992/Vol.35, No.4/OOMMUNICATION$ OF THE AGM

= A S E

This is also practical to compute
for certain kinds of transforma-
tions. In Figure 10, we see that the
step of refining a stack-computa-
tion program into LISP can be pre-
served by computing 6' =c(6') .
The revised 6' is computed by ap-
plying the refinement to the origi-
nal delta.

We have so far seen how to revise
a derivation history when we have
been told, directly or indirectly,
which transformations simply can-
not be kept. Functionality deltas
provide us with the opportunity to
directly inspect interactions be-
tween individual transformations in
the derivation history and some
desired functionality change. What
we attempt to do is to preserve as
much of the derivation history as
possible. The essential idea is to
"push" the delta through the deri-
vation history, from beginning to
end, either preserving or banishing
as we go. We scan the original deri-
vation history from beginning to
end, checking the delta for inter-
ference with each transformation.
When the existing transformation
interferes with the desired change,
we simply banish the offending
transformation; otherwise we can
preserve that transformation. The
scan stops when an existing step can
be neither preserved nor banished;
the derivation history is truncated
at the offending transformation.
The truncated derivation history is
compatible with the revised delta.
All we need to do is actually apply
the delta and finish the implemen-
tation, using the transformation
system itself. A detailed example of
derivation history revision is pro-
vided in the Appendix.

Revising Design Histories
Different maintenance deltas affect
different aspects of the transforma-
tion system, and consequently re-
quire different procedures for re-
vising the design history. Each such
procedure must determine the
impact of the delta on the design
history and adjust it accordingly. As
an example, functional deltas affect
the derivation history portion di-

rectly. Indirect effects occur as a
side effect of modifying the deriva-
tion history.

All of our design history delta-
integration methods follow the
same general sequence:
Revise: Adjust structures in delta-

specific fashion;
Mark: Identify agenda items in the
design history inconsistent with the
delta;
Prune: Prune away inconsistent
agenda items and all the forced
choices dependent on those already

FIGURE 9. Swapplng order of two overlapping sequential transformations

FIGURE 10. Preserving a refinement translates the delta

COMMUNICATIONS OF THE ACM/April 1992/Vol.35, No,4 8 1

C A S E

pruned; and
Repair: Complete the pruned de-
sign history, perhaps by using new
information supplied by a delta.

As with modifying a derivation his-
tory, these steps are interleaved in
practice, for both individual deltas,
and for the multiple deltas that
make up a composite delta.

The revision process usually in-
spects the design history relative to
a particular delta, and, while revis-
ing it, marks those parts (agenda
items) which conflict with the delta
as undesirable. How the conflicts
are detected depends on the type of
the delta. Many delta types indi-
rectly cause transformations to be
eventually banished, revising the
derivation history portion of the
design history, and marking the
agenda items that generated the
banished transformations.

Undesirable agenda items are
then pruned away, leaving an in-
complete design history. If the
pruned agenda item is a forced
(i.e., only) choice on which some
other agenda item is dependent,
then it is only sensible that the de-
pending agenda item must also be
pruned. Pruning an agenda item
leaves its parent incomplete. This
part of the integration process is
independent of the type of delta.
The pruning of agenda items often
invalidates transformations in the
derivation history, which must
eventually be removed.

Having finished the pruning
process, the incomplete design his-
tory must be repaired by processing
incomplete agenda items. We ac-
complish this by simply passing the
incomplete design history to the
TCL execution engine, which
chooses and executes incomplete
agenda items. We must of course
ensure that pruning a design his-
tory always leaves it in a legal state
as far as the TCL execution engine
is concerned. The execution engine
records the relation between
agenda items and their progeny,
thus filling out the design history.
In this fashion we avoid the need
for a special replay mechanism.

Completion for delta integration
and completion for initial imple-
mentation are identical. Repairing
may cause further revision, mark-
ing, and pruning.

Pruning and Repairing the
Design HiStOry
The purpose of pruning a design
history is to remove those parts
which are either simply invalid or
no longer serve any purpose rele-
vant to the final performance speci-
fication, G6. We assume we have a
design history in which some
agenda items have been marked
undesirable. We must prune away:

• all portions of the design history
that are directly marked,

• every agenda item that depends
uniquely on some pruned agenda
item, and

• agenda items generated as de-
scendants of those marked.

What remains after pruning is a
design history containing incom-
plete agenda items having alterna-
tive completions.

To prune an undesirable agenda
item, the design history is traversed
from that item upward until some
parent agenda is found that pro-
vides an alternative (OR or
ACHIEVE nodes). That item is then
marked as incomplete, and all
agenda items below that point are
removed from the design history.
When pruning a leaf agenda item
that APPLYs a transformation, we
additionally mark the transforma-
tion in the derivation history as
undesirable; during the plan repair
process, an eventual banish will
remove the marked transforma-
tion, which may eventually cause
additional pruning.

In Figure 11, we show a typical
pruning process. A sequence of ac-
tivities is numbered:

1. Mark agenda item Gn undesira-
ble

2. Prune the undesirable agenda
item and its dependents

3. Mark dependent transforma-
tions as undesirable

4. Banish an indirectly dependent
transformation G7

5. Mark, as undesirable, the
agenda item generating the
transformation

Some delta-specific marking pro-
cess first marks G7 as undesirable.
At the pruning step, traversal
moves up the design history from
undesirable G7 to the first parent
having an alternative Go. That item
is marked as incomplete, and all of its
descendents (the outlined region
containing Glo, G8, G7, and the un-
shown nodes that APPLY transfor-
mations c e4, c e5 and ce66) are removed
from the design history. All the
transformations under the pruned
region are also marked as undesira-
ble. Eventually, but not as part of
the pruning process for G7, some
derivation history banishing activ-
ity, triggered by the need to remove
c e4, c eS, c e6, will encounter c~7; should
this transformation itself also need
banishing, then its immediate par-
ent (APPLY under G6) will be
marked undesirable and the prun-
ing process repeated.

Repairing the pruned plan con-
sists of executing actions for incom-
plete agenda items, perhaps gener-
ating additional agenda items in the
process, and recording the new
items in the design history. Since
such agenda items can be produced
by the pruning process in the mid-
dle of the logical transformational
implementation process (according
to the sequencing constraints in the
design history), to repair a design
history we must have:

• out-of-order execution of TCL
methods and fragments

• the ability to insert transforma-
tions in the middle of the deriva-
tion history

The execution order for a
metaprogramming language like
PADDLE [26] or the tactics lan-
guage of Goldberg [11] is totally
determined, and very difficult to
restart at arbitrary points. This is
why such metaprograms are re-
played in their entirety from the
beginning. Rather than be saddled
with a purely linear execution
model for the metaprogram, we

8 2 April 1992/Vol.35, No.4/COMMUNICATION$ OF THE AGM

~ A S E

designed TCL execution in such a
way that an agenda-or iented execu-
tion process is possible. Agenda
items are produced by TCL lan-
guage constructs when encoun-
tered, and processed in the o rde r
de te rmined only by the sequencing
constraints def ined by PLANs.

Agenda-oriented execution pro-
cess chooses any incomplete item
and executes it (possibly causing the
addi t ion of more agenda items) and
then marks it complete. We choose
to process the earliest incomplete
agenda item, as de te rmined by the
order ing constraints in the design
history. This per forms those ac-
tions with the most potential r ipple
effect on the remainder of the de-
sign history as early as possible. The
earliest-first heuristic minimizes the
amount of later revision required,
by doing early actions while the
design history is as small as possible.
I t also spreads damage from invali-
dated earl ier decisions to later
points in the design history before
we at tempt to build on top of them.

Each agenda item specifies a
TCL action taken from some TCL
method which determines what
occurs when the agenda item is exe-
cuted. Most typical is the execution
of a PLAN action, and the most po-
tentially complicated is the execu-
tion of an APPLY action; we will
discuss these shortly.

An incomplete agenda item must
be executed according to its action
and produce a satisfactory sub-
agenda. Some of the agenda item
types allow only a single way to ob-
tain satisfactory complet ion (PLAN,
CALL, REQUIRE), and some allow
many alternatives (ACHIEVE,
APPLY, OR).

For alternative generators, exe-
cution generates the next possible
alternative, based on internal state
of the agenda item, and records it
in the design history. I f there are
no remaining alternatives, then the
agenda item is unsatisfiable, and is
simply pruned, exposing an even
higher-level agenda item that pro-
vides an alternative. Pruning the
design history back to an agenda

F I G U R E 11. Pruning a design history back to an alternative

item resets its alternative generator .

Execution of PLAN agenda items
occurs in a way similar to expand-
ing a node in a hierarchical nonlin-
ear planning process [8, 13]. The
design history is augmented by cre-
ating new, incomplete agenda items
for each element of the PLAN. An
execut ion-order ing relation is
placed on these newly created
agenda items according to the or-
der ing given by the PLAN action. I t
is the lack of o rde r present in many
plans that provides much of the
f reedom to reorder execution of
actions in the design history.

Execution of APPLY agenda items
requires the application of a trans-
formation to a state. I f we had a
simple l inear execution model, we
could simply apply the t ransforma-
tion to the last state of the deriva-
tion history, but with plan repai r we
can have out-of-order execution.
The t ransformat ion might be ap-
plied to any state in the derivation
history.

When choosing agenda items to
execute, we want to choose the ear-
liest to maximize the appearance of

any possible downstream effects.
When applying a t ransformation,
we want to apply it to the latest state
to which it can legitimately apply,
because we will have to revise the
derivat ion history from that point
on, and we wish to minimize the
effort to do so. The information
necessary to de te rmine this is pres-
ent in the o rder ing information in
the design history.

When incomplete APPLY agenda
items occur late enough according
to the o rder ing information in the
design history, the point of applica-
tion turns out to be the end of the
derivation history. This scheme
thus conveniently subsumes the
simple l inear execution model.

An interesting case is shown in
Figure 12, in which c e3 has been
marked as undesirable, and the
design history has then been
p runed back to G5, which offers the
alternative c~ 8, shown by the dashed
arrow. According to the sequencing
information in the design history,
this alternative t ransformation
must be appl ied jus t pr ior to the
earliest sons of G7 and Gl0 (i.e., it
should replace the third transfor-
mation). This is accomplished by

COMMUNICATIONS OF THE ACM/April 1992/Vol.35, No.4 8 3

= A S E

FIGURE 12. Repair by inserting a replacement transformation

treating the new transformation to
be applied as a functional delta 3fto
f2 and using a variation of the A T-
integration procedure to construct
a new derivation history. Such a
new derivation history is shown in
dotted outlines, growing horizon-
tally in the figure, with the new
transformation inserted in the
middle.

The revised derivation history
must have all retained transforma-
tions revalidated to ensure that they
continue to serve the purpose for
which they were originally in-
tended. This is accomplished by
checking that each transformation
continues to play its designated role
as specified by the design history;
postconditions of parent agenda
items are checked as transforma-
tions are preserved. An apparent
preservable transformation which
fails to achieve a desired effect must
be banished; this is accomplished by
marking its parent, which will cause
a later cycle of prune and repair.

Delta-Specific Revise and Mark
Having sketched how a design his-
tory is pruned and repaired, we

now outline revision and marking
procedures for the common delta
types. Each such procedure revises
the design history in a delta-specific
way, and marks the part of the de-
sign history that is no longer rele-
vant.

Integration of functional deltas Af
into a design history is easy because
plan repair already does most of
the work. There is no need to ini-
tially mark any part of the design
history at all. It is only necessary to
APPLY the functional delta 6f to f0.
The derivation history revision
mechanism mentioned earlier will
propagate the changes into the de-
sign history appropriately.

Integration of performance deltas
A6: Performance deltas change the
specification of the desired artifact
(performance bound deltas 6v are
simply a special case of A6, and so
essentially the same integration
procedures can be used). We have
seen that typical specifications are
often given as mixed specifications
(f0, Go). Since we have a mechanism
to handle changes to f0, we limit

performance deltas to changes of
Go. Changing Go requires that a dif-
ferent path through the same imple-
mentation space (left half of Fig-
ure 8) be chosen to an alternative
implementation fG'. The choice of
path through the implementation
space is controlled by decomposi-
tion of the performance goals al-
lowed by TCL methods in Mlibrary.
The decomposition o f the perfor-
mance goal for the current artifact
is stored in the structure of the de-
sign history. Integration of A6 re-
quires that we revise this decompo-
sition.

We revise the design history by
propagating the specific 66 in a top-
down fashion, paralleling the de-
sign history construction method by
goal decomposition. As we walk
down the design history, at each
ACHIEVE(G,e) agenda item (see
Figure 13), we must do the follow-
ing:

* Revise the ACHIEVE(G,e) agenda
item to be ACHIEVE(6a(G),e)

* Decide if CALLing method i is
still useful as a means of decom-
posing the revised goal
- - I f still useful, determine the

changes induced by 66 and
propagate those into both
subplans.

- - I f not, prune the non-
procedurally generated sub-
plan.

Determination of the continued
utility of the method mk =
(Gk, actionk) requires that we
revalidate the goal decomposition
for the agenda item. This can often
be done by simple substitution. The
revised subgoals must be propa-
gated into the subplans; propaga-
tion should be into earlier subplans
first to ensure that damage caused
to early plans is propagated to later
plans by the pruning process, en-
suring that effort to update such
later plans is only applied to their
useful parts.

I f we cannot revalidate the goal
decomposition, then the existing
plan to implement ACHIEVE(G,e)
is not valid for the new

8 4 April 1992/%1.35, No.4/COMMUNICATIONS OF THE ACM

[~[~---~

ACHIEVE(6c(G),e). We force the
eventual p runing of the generated
plan by marking both the CALL and
the ACHIEVE(Gx,e') nodes as unde-
sirable, and terminate the propaga-
tion of 6c into this subagenda. An
eventual p runing process will
prune the plan back up to the re-
vised ACHIEVE(6c(G),e) node, and
the repai r process will a t tempt to
find a new replacement.

Figure 13 shows how this occurs
for a specific case. We start with an
original per formance goal Go of
O(n ~) with source lines (sloc) less
than 10 and target language LISP.
We want to apply a 6c having two
parts, Ge, removing constraints,
and G~, adding new constraints.
The design history shows that the
original per formance goal was
achieved by decomposing the prob-
lem into an action CALLing a
known method mk whose postcondi-
tion ensures an arbi trary complex-
ity and a specific target language,
and then ACHIEVEing non-
procedural ly the remaining par t of
the original per formance goal, the
desired sloc.

The design history revision re-
quires that the new performance
goal be propaga ted into the sub-
agenda items. This requires that
the former goal pcomplexity condition
of O(n 2) be revised to O(n log n) and
propagated into the body of the
called method. This is just another
performance delta 6j and is propa-
gated by similar techniques. Simi-
larly, a revised per formance delta
6~ for sloc is constructed and propa-
gated. Should there be no way to
revise the postconditions to match a
performance delta, then the corre-
sponding agenda item is marked as
undesirable.

D M S U s a g e
The obvious use of a DMS is the
construction of an incremental
maintenance system. System ana-
lysts compare needs against existing
system specifications, and produce
maintenance deltas. The deltas are
integrated into the existing design
history for the existing software
artifact, p roducing a revised history

Given Se~ (G O, Ge): /

/ Ge-~ O(n 2)/k sloc< 10
Ge, ~ O(n log n) A sloc < 8

[I G = - O (n 2) A s I ° c < I O A L I S P
ACHIEVE(G,e) G" =- O(n log n) A sloc < 8 A LISP

CALL(i, (~) (~ "~ ?x ~ n 2 ACHIEVE(Gx, e')
I o-' -= ?x ~ n log n

ak]

I

Gx = - sloc < 10

G x~ sloc < 8
"G =- (s loc< 10, s loc< 8)

I Gi=- O(?x)
ACHIEVE(Gj, ej) I $i =- (O(n2),O(n log n))

II=IIIUIIIf 13. Propagating 8a from root to

and a revised artifact.
Since the procedures are insensi-

tive to whether the design history is
complete or not, one can apply del-
tas using a DMS to a partially com-
pleted implementat ion. This allows
a DMS to be used dur ing the initial
implementat ion phase. The repair
process can be s topped after any
agenda item is processed, and a
new delta applied. Thus deltas can
be appl ied at will. Such a DMS
would allow us to pe r fo rm transfor-
mational maintenance relatively
cheaply and lead toward the goal of
an Incremental Evolution lifecycle.

A DMS can also be used as a
foundat ion for a reusability system.
Implemented components are
stored with their specifications and
design histories in a library. A
reuser chooses a component whose
specification is near his desires; the
difference is a delta and is appl ied
to the stored history to help revise
the component .

Status: A prototype system that
takes a derivation history and a
functional delta, using conditional
tree t ransformations and theory
morphisms has been tested. It gen-

leaves of design history

era ted the example in Append ix B,
as well as a number o f similar ex-
amples. Work on an implementa-
tion of the design history delta inte-
grat ion procedures has started.

The other components of a DMS
are relatively well unders tood,
making it practical to consider
building an exper imental DMS.
Applicat ion of a practical DMS is
still probably several years away,
because of the need to build consid-
erable t ransformational infrastruc-
ture, the need to encode consider-
able implementat ion knowledge,
and to test the ideas on systems with
real scale.

Related Work
A short survey of the state of soft-
ware maintenance is provided by
[21]. A fundamenta l observation is
that for conventional maintenance,
it is difficult to de termine what
code is affected by a change. A
DMS acquires this traceability from
a design history.

PDS [9] is a t ransformat ion sys-
tem that retains derivation histo-
ries, and rederives components
dependen t on changed compo-
nents. This is a kind of t ransforma-

COMMUNICATIONS OF THE ACM/Apr i l 1992/Vol.35, No.4 8S

C A S E

fo

80 : empty . _ _P_"~-~-(s.eY_~gL@.<Z !'_2~- -~

~̀ ::::::::::::::::::::::::::::::~:::~:~:~:::::::::~:~:~:!~::::::::::~:::.~:~:~:~:::::::::::~:::~:::~:~:~:::::~

~ cl : pop(push(?x, ?z)) ~C 1@(2)
?Z @ (2)

iiii',~'~iiiiiiiiiiiii iiii',',',',ii',i',i~ 8,: empty = I

I ~ push ~ cons top = car
L empty = nil pop = cdr S

f2 f'2 - I~

fa

f4

/
: nil~ /c4@(2)

',s,nil)@(2) T

cons(?z, nil) ~ I
Jst(?z)@(2) +

t;

Original Implementation Space New Implementation Space

FIGURE 14. ~-Integratlon (replay) using a derivation history

6 April 1992/VoL35, No 4/COMMUNICATIONS OF THE ACM

C A S E

tional MAKE, in which there is no
explicit delta to help guide the revi-
sion process [10].

A system for maintaining exist-
ing software by reverse-engineer-
ing an existing concrete p rogram
into an abstract program, applying
an explicit functional delta to the
abstract program, and reimple-
ment ing the abstract p rogram is
described by [24]. An earl ier view
of maintenance with explicit deltas,
and how those deltas affect naviga-
tion of the implementat ion space, is
provided in [3]. Neither of these
consider the rationale needed to
achieve desired per formance prop-
erties.

Others have suggested en-
hancing the t ransformational
maintenance process by reusing
generative design information
(goal-directed plans) [11, 26]. What
distinguishes our work is the use of
target-program-specif ic design in-
formation and the use of formal
deltas to guide revision o f this in-
formation. The problem of con-
structing a design history is very
close to that of planning [1], with
the difference being primari ly the
requi rement to use correctness-
preserving transformations. Many
of the general ideas on what parts
of a plan need repai r are summa-
rized by [17]. Work on plan repair
and reuse [13] is often limited to
sets of facts ra ther complex struc-
tures such as programs with indi-
rectly der ived propert ies, al though
the mechanisms bear considerable
similarity.

Conclusions
We have sketched a DMS based on
capture and reuse o f design infor-
mation from a t ransformational
implementat ion process. The DMS
updates the specification ("what"), a
derivation history ("how"), and the
design history ('~justification") using
a formal maintenance delta to
guide the revision process. A sys-
tem demonst ra t ing some of the
concepts has been built and tried on
small examples.

Such a DMS could radically
change software life cycles by unify-

ing design and maintenance into a
process of integrat ing a stream of
formal deltas into the design,
ra ther than focusing solely on the
product ion of code. It is, perhaps,
possible to translate software imple-
mented conventionally into a form
compatible with DMS by using
t ransformational design recovery
techniques [3, 24].

An incremental system for de-
sign revision need not be fast, if the
amount of change per increment is
small. This suggests that formal
software construction methodolo-
gies may be justifiable solely be-
cause the design knowledge can be
formally captured and reused. This
in itself may justify their use even if
one ignores any other positive ben-
efits such as removing ambiguity
from specifications, raising the
quality of implementat ions, and the
potential for automation.

Acknowledgments
Special thanks go to former mem-
bers of the Advanced Software
Engineering project at the Univer-
sity o f California at Irvine for moral
and technical support , including
Peter Freeman, Y.V. Srinivas, and
D.L. Rector. P.I

References
1. Allen J., Hendler, J., and "Fate A.,

Eds. Readings in Planning. Morgan
Kaufmann, San Mateo, Calif., 1990.
ISBN 1-55860-130-9.

2. Arango, G. Domain engineering for
software reuse. Ph.D. thesis, De-
partment of Information and Com-
puter Science, University of Cali-
fornia at Irvine, July 1988.
ICS-RTP-88-27.

3. Arango, G., Baxter, I., Freeman, P.,
and Pidgeon, C. TMM: Software
maintenance by transformation.
IEEE Softw. 3, 3, 27-39, May 1986.

4. Balzer, R. A 15-year perspective on
automatic programming. IEEE
Trans. Softw. Eng. SE-11, 11 (Nov.
1985), 1257-1268.

5. Bauer, F.L., Moiler, B., Partsch, H.,
and Pepper, P. Formal program
construction by transformations--
Computer-aided, intuition-guided
programming. IEEE Trans. Softw.
Eng. 15, 2 (Feb. 1989), 165-180.

6. Baxter, I.D. Transformational
maintenance by reuse of design his-

tories. Ph.D. thesis, University of
California at Irvine, Nov. 1990.
Tech. Rep. 90-36. Also available
from University Microfilms Inter-
national, Catalog #9109634.

7. Boyle, J.M. and Muralidharan,
M.N. Program reuseability through
program transformation. IEEE
Trans. Softw. Eng. SE-IO, 5 (1984),
575-588.

8. Charniak, E. and McDermott, D.
Introduction to Artificial Intelligence.
Addison-Wesley, Reading, Mass.,
1985. ISBN 0-201-11945-5.

9. Cheatham, T.E., Jr., Holloway,
G.H., and Townley, J.A. Program
refinement by transformation. In
Proceedings of the Fifth International
Conference on Software Engineering,
(San Diego, Calif., Mar. 1981), pp.
430-437. Reprinted in New Para-
digms for Software Development, Wil-
liam W. Agresti, Ed., IEEE, 1986,
ISBN 0-8186-0707-6.

10, Feldman, S.I. Make--A program
for maintaining computer pro-
grams. Softw.--Prac. Exp. 9 (Apr.
1979), 255-265.

11. Goldberg, A. Reusing software de-
velopments. Tech. Rep., Kestrel
Institute, Aug. 1989. 3260 Hillview
Avenue, Palo Alto, Calif., 94304.

12. Johnson, W.L. and Feather, M.
Building an evolution transforma-
tion library, In Proceedings of the
Twelfth International Conference on
Software Engineering. IEEE Com-
puter Society Press, Mar. 1990.

13. Kambhampati, S. Flexible reuse
and modification in hierarchical
planning: A validation structure
based approach. Ph.D. thesis, Uni-
versity of Maryland, Oct. 1989.
Tech. Rep. CAR-TR-469, CS-TR-
2334, Computer Vision Laboratory,
Center for Automation Research,
College Park Maryland, 20742-
3411.

14. Lientz, B.P. and Swanson, E.B. Soft-
ware Maintenance Management: A
Study of the Maintenance of Computer
Application Software in 487 Data Pro-
cessing Organizations. Addison-
Wesley, Menlo Park, Calif., 1980.

15. Littman, D.C., Pinto,J., Letovsky, S.,
and Soloway, E. Mental models and .
software maintenance. In Empirical
Studies of Programmers, E. Soloway
and S. Iyengar, Eds., Ablex, Nor-
wood, N.J., 1986, pp. 80-98.

16. McCartney, R. Synthesizing algo-
rithms with performance con-
straints. Ph.D. thesis, Brown Uni-
versity, 1988. Department of

COMMUNICATIONS OF THE ACM/Apri11992/Vo1.35, No.4 8 7

C A S E

Computer Science Tech. Rep, CS-
87-28, Dec. 1987.

17. Mostow, J. Some requirements for
effective replay of derivations. In
Proceedings of the Third International
Machine Learning Workshop, (Skytop,
Pa., June 1985), pp. 129-132.

18. Neighbors, J. The Draco approach
to constructing software from reus-
able components. IEEE Trans. Softw.
Eng. SE-IO, 5 (Sept. 1984).

19. Ning, J.Q. A knowledge-based ap-
proach to automatic program anal-
ysis. Ph.D. thesis, University of Illi-
nois at Urbana-Champaign, 1989.
UIUCDCS-R-89-1548.

20. Reasoning Systems Inc. REFINE
User's Guide. Reasoning Systems,
Inc., Palo Alto, Calif., 1986.

21. Schneidewind, N.F. The state of
software maintenance. IEEE Trans.
Softw. Eng. SE-13, 3 1987, 303-310.

22. Smith, D.R., Kotik, G.B., and
Westfold, S.J. Research on knowl-
edge-based software environments
at Kestrel Institute. IEEE Trans.
Softw. Eng. SE-11, 11 (Nov. 1985),
1278-1295.

23. Sneed, H.M. The myth of top-down
software development and its con-
sequences for software mainte-
nance. In Proceedings of Conference
on Software Maintenance, (Miami,
Fla., Oct. 1989), IEEE Computer
Society Press, pp. 22-29. ISBN
0-8186-1965-1, IEEE Catalog Num-
ber 89CH2744-1.

24. Ward, M., Calliss, F.W., and Munro,
M. The maintainer's assistant. In
Proceedings of Conference on Software
Maintenance 1989, (Miami, Fla., Oct.
1989), IEEE Computer Society
Press, pp. 307-315. ISBN 0-8186-
1965-1, 1EEE Catalog Number
89CH27441-1.

25. Wedo, J.D. Structured program
analysis applied to software mainte-
nance. In Proceedings of Conference
on Software Maintenance (Wash. DC,
1985), pp. 28-34. IEEE. ISBN
0-8186-0648-7.

26. Wile, D. Program developments:
Formal explanations of implemen-
tations. Commun. ACM 26, 11 (Nov.
1983), 902-911. Also available
from University of Southern Calif.,
Information Sciences Institutes as

, . , . ~ - ~ ; , I . ~ ' , - ~ , , ~

8 8 April 1992/Vol,35, No 4/COMMUNICATIONS OF THE ACM

e n v i m n m e n ~ i s a 0 1 ~ c u l t . s

Rep. ISI/RR-81-99, which contains
the appendices not included in the
ACM version.

CR Categories and Subject Descrip-
tors: D. 1.2 [Programming Techniques]:
Automatic Programming; D.2.2 [Soft-
ware Engineering]: Tools and Tcch-
niques--Computer-aided software engi-
neering (CASE); D.2.7 [Software
Engineering]: Distribution and Mainte-
nance; D.2.10 [Software Engineering]:
Design; D.2.m [Software Engineering]:
Miscellaneous--Reusable software; 1.2.2
[Artificial Intelligence]: Automatic
Programming--Program modification,

• Program synthesis, Program transformation;
1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods and Search--
Heuristic methods, plan execution, formation
and generation; J.6 [Computer-Aided
Engineering]: Computer-aided design;
K.6.3 [Management of Computing and
Information Systems]: Software Man-
agement--Software development, software
maintenance

General Terms: Design, Documenta-
tion, Theory

Additional Key Words and Phrases:
Formal CASE, design, maintenance,
reuse, transformation

About the Author:
IRA D. BAXTER is a research scientist
with the Schlumberger Laboratory for
Computer Science in Austin, Tex. His
research interests include transforma-
tional software implementation and
parallel computing. Author's Present
Address: Schumberger Laboratory for
Computer Science, P.O. Box 200015,
Austin, TX 78720-0015, baxter@
slcs.slb.com.

This work has been supported by the Micro-
electronics and Computer Corporation/
Software Technology Program summer in-
tern program, National Science Foundation
CER grant CCR-8521398, and California
Micro grants #85-131, #86-017, and #87-055
in conjunction with Alcoa, Inc, and the Soft-
ware Productivity Consortium.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission•

© ACM 0002-0782/92/0400-073 $1.50

C O M M U N I C A T I O N S O F T H E ACM/Apri11992/Vo1.35, No.4 B g

