
C A S E  

D e s i g n  
M a i n t e n a n c e  

Lditional maintenance has 
proven difficult in the absence of design information [19]; maintainers often 
spend considerable energy trying to recover this design information before 
making changes [15]. Capture and reuse of certain kinds of design informa- 
tion should consequently improve the maintenance process. Updating the 
design information is as important as revising the software itself, for the revised 
design information is necessary for further maintenance. Four major software 
engineering efforts that ended in disaster precisely because trying to main- 
tain their designs was perceived as impractical are described by [23]. Conse- 
quently, each design was abandoned and the projects spiraled into chaos. 

Rather than emphasize software 
maintenance, we suggest that design 
maintenance become the key focus, 
with programs being easily derived 
from a complete design. The  details 
of  our  work lay foundations for 
such design maintenance systems 
(DMS). This article sketches such a 
system. In particular, it defines the 
kinds of  information such a system 
must retain and a particular ap- 
proach to capture and modify that 
information. For more details, the 
reader is referred to [6]. 

We believe that productivity ad- 
vances in software construction and 
maintenance depend on automa- 

tion, which, in turn, depends on 
formalization. Our  approach fo- 
cuses on theories and mechanisms 
necessary to allow formal mainte- 
nance deltas to be integrated into 
software systems constructed by 
rigorous, if not completely auto- 
matic, means. Such deltas express 
desired changes in program func- 
tionality, performance, and imple- 
mentation technology. Figure 1 
shows a life cycle model establishing 
the context for a DMS. Most of  the 
mechanisms are concerned with 

comparing the existing artifact with 
some ideal, and producing a main- 
tenance delta describing the error. 

I f  one had a design maintenance 
system based on integrating formal 
deltas, then the life cycle notions of  
design/coding phases and mainte- 
nance phases become indistinguish- 
able. Software would be con- 
structed by incrementally revising a 
current design according to a con- 
tinuous stream of  maintenance del- 
tas generated by comparing ex- 
pected consequences of  the current 
design with customer desires and 
available implementation technolo- 
gies. 
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FIGURE 1. Incremental evolution by delta Integration 

Our particular approach to a 
DMS requires that: 

• the software system be formally 
specified; 

• its implementation be derived 
transformationally; 

• the justification for the imple- 
mentation be captured; 

• desired maintenance deltas be 
formally specified; 

• suitable tools for design justifica- 
tion modification exist. 

Given this background, a DMS 
requires: 

• a representation for programs 
• a transformation engine 
• an agenda-oriented metapro- 

gramming language 
• a representation for the justifica- 

tion 
• justification revision mechanisms, 

which we call delta integration 
procedures 

We address these in turn, with 
the bulk of this article being de- 
voted to delta integration proce- 
dures. 

Sof tware  Construction Model  
Conventional software construction 
almost invariably loses two critical 
classes of  design knowledge: the 
problem specification, and the de- 
sign justification. The justification 

demonstrates that the implementa- 
tion truly solves the problem stated 
by the specification. This knowl- 
edge is lost because of the informal 
nature of  the construction process, 
and its dependence on smart agents 
(programmers) whose design 
knowledge and activities are largely 
contained in the agents, rather than 
in a formal database. 

We choose formal transforma- 
tion systems as a basis for a formal 
construction methodology. Such 
systems accept formal specifications 
(predicates defining functionality 
and performance goals to be 
achieved) and apply transforma- 
tions to the specification to con- 
struct the final program. We use a 
library of  heuristic methods coded 
in a Transformation Control Lan- 
guage (TCL) to control the applica- 
tion of implementing transforms. 
Each method formally relates a de- 
sign plan, consisting of some set of 
activities ("how"), to a design pur- 
pose which states the effect ("what") 
the plan achieves. "How" is stated 
in the form of plans for applying 
specific transformations or other 
methods in the form of nonlinear 
plans (sets of actions and explicit 
sequencing information about their 
order of  execution [8]). "What" is 
stated as predicates on arbitrarily 
defined performance measures 

over program regions. A set of  
TCL methods is used to non- 
procedurally decompose the speci- 
fication into solvable subproblems 
with their own specifications. The 
plans from methods chosen for a 
particular decomposition are exe- 
cuted to actually solve the subprob- 
lems. 

Thus a set of  TCL methods cap- 
ture generative design knowledge. 
It is not design knowledge for a 
particular problem, but for a class 
of  similar problems. Such knowl- 
edge is not only crucial to initial 
implementation, but is also neces- 
sary to regenerate portions of  a re- 
lated program resulting from a de- 
sired change. 

Transformation System Model 
Our particular transformational 
model is summarized in Figure 2. 
This model covers many of the ex- 
Isting transformation systems (CIP 
[5], MEDUSA [16], TAMPR [7], 
Draco [18], TI  [14], REFINE [20, 
22]). Practical specifications have 
two parts, (f0, Go), which we shall 
motivate shortly. A number of sup- 
port libraries provide the necessary 
technology to implement the speci- 
fication. Members ci of a library of 
transforms Clibrary a r e  applied to 
convert an abstract operational 
specification into a concrete pro- 
gram. Performance measures are 
used to determine what properties 
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a partially transformed program 
has, and produce results from a 
range specified by performance 
values. Subsumption relations de- 
fine the notion of  "at least as good 
as" over the measured perfor- 
mances. Library predicates com- 
bine performance measures and 
subsumption relations to define in- 
teresting levels of  performance. 
The method library contains plans 
for applying transforms to achieve 
known performance levels for pro- 
gram regions. 

Specifications 
A transformation system requires 
that we somehow specify what pro- 
gram we desire. Such specification 
capabilities are also needed for de- 
scribing the effects of  transforma- 
tional plans. The most general 
form of  a specification is a predi- 
cate over programs, which we de- 
note G. 

Suppose we have two kinds of  
performance measures used to 
specify programs, functionality and 
computational complexity. A full 
specification of  a sorting program p 
might then be: 

G =- sorted(p(x)) A complexity(p(x)) = 
O( length(x) • log(length(x))) 

As a practical matter, transforma- 
tion systems often avoid specifica- 
tion of  functionality as a predicate 
by requiring, instead, an opera- 
tional description (i.e., an abstract 
program) whose semantics satisfy 
the desired functionality. Thus one 
might specify the functionality f0 of  
p by the operational program 
sort(X), whose semantics are defined 
as sorted(sort(x)), with another predi- 
cate Go containing the balance of  
the predicate G. The mixed specifi- 
cation (f0, Go) for p is then 

(sort(X), complexity( p(x) ) = 
O( length(x) . log( length(x) ) ) ) 

The transformation system then 
need only apply correctness- 
preserving transformations to the 
program f0, such that the other per- 
formance goals Go are achieved. 

Transforms, kocators and 
Transformations 
We define a transform to be any 

function which maps programs into 
programs. Often, a transform is 
applied to a particular place of  a 
larger program; we designate such 
places with locators. We call the ap- 
plication of  a transform t at place 
a transformation and denote it as t e. 
I f  we use a correctness-preserving 
transform, we generally use c 
rather than t. Any particular pro- 
gram representation will determine 
how the transforms and the loca- 
tors are represented. A common 
program representation is an ab- 
stract syntax tree; tree transforms 
are represented by pairs of  trees 
containing pattern variables, and 
locators are represented by paths, a 
possibly empty sequence of  integers 
that describe how to navigate f rom 
the root of  the tree to the root of  a 
subtree where the tree transform 
will actually be applied. Each ele- 
ment of  a path selects a numbered 
branch, counting from left to right. 
We denote tree transformations by 
writing 

pattern ~ pattern@(path) 

Figure 9 shows several such tree 
transformations, written as linear 
strings with ?letter as pattern vari- 

ables, and the effect of  applying 
them to particular trees. A differ- 
ent type of  transformation is a re- 
finement, which atomically maps 
entire programs at one level of  ab- 
straction to another, and is shown 
vertically in Figure 10. Being ap- 
plied everywhere, refinements do 
not need a locator. 

Transformational Planning 
Components 
Multiple transforms may apply to a 
program; in the case o f  sort, it may 
be implemented by refining it into a 
bubblesort or a mergesort (Figure 
3). TCL provides ways of  choosing 
transformations that produce de- 
sired effects, by providing a lan- 
guage for stating both procedural 
and nonprocedural  actions for 
achieving such effects. A TCL 
method is a plan for achieving an 
explicit performance property, 
stated as a plan postcondition, over 
some portion of  a program. Proce- 
dural actions in plans are those to 
be taken by the transformation sys- 
tem, usually the application of  a 
transform (APPLY) at a designated 
place in the program, the invoca- 
tion of  a named set of  actions 
(CALL), or the determination of  a 

FIGURE 2. Transformation system controlled by Methods. 
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place or region relative to another 
(LOCALE). Nonprocedural  actions 
are goal-oriented statements of  

FIGURE 3. Transforms that 
Implement sort 

purpose, to be achieved by consult- 
ing a library of  existing TCL meth- 
ods for relevant plans. The  
postcondition states an expected 
property of  the program after 
the method's actions have been 
applied. Figure 4 shows a TCL 
m e t h o d  ~?~mergesort for implementing 
a provably "n log n" procedure for 
sort by refining it into a merge sort, 
with performance constraints 
(ACHIEVE) on the implementa- 
tions of  the components of  the 
merge sort. The  method plan is to 
sequentially (SEQ) apply the re- 
finement transform, producing a 

FIGURE 4. A TCL method Implementing sort with O(n In n) performance 

FIGURE 5. Transformational design history Including unfolded design plans 

locator lvo for the refined code, and 
then to ensure (PLAN) that the var- 
ious parts of  the refined code are 
implemented correctly. A partial 
order  on PLAN steps is generally 
needed to specify the essential se- 
quencing requirements on the 
transformation process; SEQ is just 
a specialized type of  plan in which 
all steps must be executed in a par- 
ticular linear order. In the exam- 
ple, sequencing of  the subplan steps 
is not needed, as long as all plan 
steps succeed. Failure o f  any part o f  
the plan causes the method to fail; 
backtracking allows the transfor- 
mation system to try other meth- 
ods. 

Design C a p t u r e  
Design capture requires that we 
know: 

• What was desired--specification 
• How it was achieved--imple- 

mentation actions 

• Why the implementation works- -  
justification 

Use of  a transformation system, 
plus a transformational planning 
language such as TCL, allows us to 
capture this information. The  for- 
mal specification tells us what is in- 
tended and is trivial to capture. The  
sequence o f  transformations actu- 
ally applied tell us how the gener- 
ated program was constructed, and 
is captured as a linear derivation his- 
tory 1. The  motivation for applica- 
tion of  each transformation is cap- 
tured by storing a trace of  the 
nonprocedural  unfolding of  goals 
during the course of  execution of  
the TCL methods. We call such a 
trace a design history. Encoding 
alternative decompositions for 
(sub)specifications as TCL methods 
captures design alternatives. 

Figure 5 shows an abstract design 
history (DH). The  conceptual speci- 
fication G is written as a mixed 
specification (fo, Go). The func- 
tional specification portion f0 is 
transformed repeatedly, producing 
intermediate specifications f,, and 

IThe derivation history can be stored nonline- 
arly, but that has little effect on our  theory. 
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eventually the final program fa. 
The performance goal Go is decom- 
posed by selection of  subgoals 
achievable by TCL methods, that in 
turn eventually provide the needed 
transformations. Goal nodes in the 
design history are called agenda 
items, because those on the frontier 
of  an incomplete design history 
represent uncompleted actions or 
further goals to be achieved. Ar- 
rows between specification nodes 
represent the transformations 
which were applied. The  leaf nodes 
plus transformations constitute a 
part of  the design history called a 
derivation history. A crucial detail 
of  the derivation history is not only 
which transform were applied (ci), 
but the locators ei indicating where 
they were applied. The  design his- 
tory also records dependencies on 
the order  of  execution of  agenda 
items. 

Design Ma in tenance  
One reason conventional software 
maintenance is difficult is that the 
kind of  information present in a 
design history is missing. The  only 
information the conventional main- 
tainer possesses with certainty is the 
final program fG- Much of  a main- 
tainer's work consists of  informally 
reconstructing the relevant portion 
of  the design information, even 
before a change is made. To make a 
change, one modifies fc  directly to 
produce f~.  The next maintainer 
must repeat this laborious process 
with f~.  Such reconstruction also 
brings with it the frequent problem 
that the rediscovered design infor- 
mation is incorrect, which intro- 
duces faulty assumptions and con- 
sequently, bugs into the maintained 
program. Conventional software- 
engineering practices can help alle- 
viate this problem, but since most 
design documentation is informal, 
not directly or causally coupled to 
the code, and not of  primary inter- 
est to the end customer or corpo- 
rate management,  the presence of  
such documentation only slows the 
slide into code-only maintenance. 
Such design information is aban- 
doned when the maintainers per- 

FIGURE 6. Updating design according to 

ceive the code to be more accurate 
than the documentation. It is our 
contention that focus on maintain- 
ing the code eventually leads to loss 
of  the design. 

Rather than focus the mainte- 
nance process on the end code, our  
approach is to maintain the design, 
and derive the program from the 
design. This ensures that the design 
stays up to date, because it is the 
primary artifact. 

In a transformational context, 
the problem of  design maintenance 
is one of  updating the specification, 
the derivation history, and the de- 
sign history in a way consistent with 
any new desire, stated as a mainte- 
nance delta (Figure 6). The  imple- 
mentation is easily generated by 
sequentially applying all the trans- 
formations in the revised derivation 
history to fD. 

Maintenance  Deltas 
Before making a change, the de- 
sired change must somehow be 
codified. Traditional maintenance 
classifies change types into perfec- 
tive, adaptive, and corrective [14, 25]. 
Although this classification may be 
useful to management,  it is of  little 
use to the maintainer in guiding the 
modification process. 

By enumerating the inputs of  a 
formal transformation system, we 
can exhaustively and formally de- 
fine the types of  formal mainte- 

maintenance delta 

nance deltas that can affect the out- 
puts (i.e., the implemented 
program). We can then use knowl- 
edge of  how a transformation sys- 
tem operates to define procedures 
for handling each  type of  delta. 

Deltas come in two fundamental  
varieties: specification deltas (those 
that affect the problem definition) 
and support  deltas (those that af- 
fect how the solution is imple- 
mented). Specification deltas model 
understanding of  dissatisfaction 
with the presently implemented 
program. Support  deltas model 
improvements over time of  the 
expertise of  the developers. We 
denote the type of  a delta by Atyt, e ' 
and a particular instance delta by 
~type. For our  particular transforma- 
tion system model we found the 
types of  maintenance deltas shown 
in Figure 7. (See box for explana- 
tion of  all the delta types covered by 
our model.) 

We believe that the majority o f  
deltas are specification deltas: Af, 
those that describe changes in de- 
sired system function, and Ac, de- 
scribing change in desired perfor- 
mance. 

Each type of  maintenance delta 
has a specific representation. A nice 
synergy with transformation sys- 
tems is that a functionality delta 6/ 
can be represented directly as a 
(noncorrectness-preserving) trans- 
formation, t e. A performance delta 
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aa can often be represented  as a 
pair  of  sets of  per formance  predi-  
cates, Ge, removing per formance  
constraints, and G~, adding  new 
per formance  constraints. We show 
procedures  for integrat ing such 
deltas into a design in the following 
section; we have procedures  for in- 
tegrat ing all the delta types. 

Integrating a Delta 
into a Design History 
Design maintenance must start with 
a design history. We can construct 
one from scratch by runn ing  a 
t ransformational  implementat ion 
on a chosen specification, or, as a 
last resort,  by reverse-engineer ing 
such a history from an existing sys- 
tem [3]. Since we believe that gen- 
erat ing such a history is expensive, 
because of  the need for the trans- 
format ion system to consider many 
implementat ion alternatives, we 
almost always use a revised history 
from a previous design mainte- 
nance step. Given a part icular  
maintenance delta, the problem 
then becomes one of  revising the 
existing history, using the transfor-  
mation system as little as possible. 

We do not address  the question 
of  how a maintenance delta is cho- 
sen, or how to handle  justifications 
for the part icular  delta. Because the 
rate at which problems are detected 
with implemented  software can 
exceed the rate at which such prob- 
lems are resolved, a number  of  in- 
dividual maintenance deltas are 
frequently bundled  together  as a 
single composite delta. While such 
composite delta may be processed 
by breaking it into its individual 
parts and processing each sequen- 
tially, there is economy in the de- 
sign maintenance process if the 
composite delta is handled  as a 
batch, in that many interacting ef- 
fects of  the changes are handled  at 
once. However,  in this article we 
will consider only individual main- 
tenance deltas. 

Revising the specification com- 
ponent  of  design information is 
simple: apply a specification delta 
to the current  specification. Sup- 
por t  deltas are appl ied to the trans- 

format ion system components;  they 
do not  affect the statement of  the 
specification, but  can affect its 
meaning or  implementat ion.  

What  remains is to revise the de- 
sign history to be consistent with 
whatever delta has been applied.  
This is accomplished by: 
1. rear ranging  and pruning  the 

derivat ion history part  of  the 
design history according to the 
delta, 

2. p runing  away parts of  the design 
history which no longer  serve a 
useful purpose,  

3. using the s tored TCL methods 

to regenerate  any liiL~,mplete 
part  of  the design history. 

The  detailed mechanics of  the first 
two steps are de te rmined  by the 
type of  the delta. The  general  
mechanisms are similar. The  re- 
generat ion process uses the trans- 
formation system. 

Revising and Pruning Derivation 
Histories 
A derivat ion history represents  a 
part icular  trajectory th rough  an 
implementat ion space from a func- 
tional specification to a solution. 
Often many other  equivalent tra- 

Types  o f  M a i n t e n a n c e  D e l t a s  

P e ~ r m a r  
mance deRa 
ther too !oo 
application, 
a t a  ~asOm 
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jectories from the same specifica- 
tion to the same solution may be 
obtained by rear ranging  the se- 
quence of  the transformations.  
Given a part icular  delta, an existing 
derivation history can be rear- 
ranged into two parts, much like 
separat ing oil and water. The  first 
part  consists of  those t ransforma- 
tions that are still legitimate in the 
face of  the part icular  delta; the sec- 
ond part  consists of  t ransforma- 
tions (and their dependents)  that 
conflict with the delta. 

We determine  the preservability 
of  an individual t ransformation of  

the derivation history by at tempt-  
ing to prove that it "commutes" 
with the delta. I f  it does, application 
of  the delta can be delayed past the 
preservable t ransformation.  Such 
proofs often succeed, and are even 
very efficient, because the transfor-  
mations and deltas in programs of  
modera te  or  larger size tend to be 
appl ied far "apart" in the program,  
in terms of  purpose  or  effect. This 
is one reason that most code in 
maintained programs does not 
change. Special techniques are used 
on t ransformations and deltas that 
are appl ied near  one another;  

sometimes both the preserved 
t ransformat ion and the delta must 
be adjusted to account for their 
mutual  interference,  extending the 
notion of  "commutes." An interest- 
ing example of  this is pushing a 
delta th rough  a t ransformation that 
changes abstraction levels (e.g., a 
t ransformat ion from abstract 
lambda calculus into machine code 
can map a lambda calculus delta 
into a machine code delta). I f  our  
conservative proof  fails, we banish 
the offending t ransformat ion and 
its dependents  to the second part  of  
the derivat ion history. 

The  second par t  of  the deriva- 
tion history is reuseless with respect 
to the delta, and must  be removed.  
The  first part  is a legitimate deriva- 
tion history for a partially im- 
p lemented  p rogram and can be 
preserved intact. Addit ional  trans- 
formations may be needed to fill 
out  the derivation history and ob- 
tain a complete implementat ion;  
but  first, the remaining transfor- 
mations must be revalidated. We 
will re turn  to this topic later. The  
remainder  of  this section is devoted 
to showing how a derivation history 
can be revised given a part icular  
functional delta, 6f. The  mecha- 
nism can be used as a component  of  
o ther  delta propagat ion proce- 
dures.  

Unders tanding  the relationship 
of  a presently existing derivation 
history to its revised version helps 
clarify our  procedures.  Applying a 
change 6f (shown as 60) to the func- 
tional par t  of  a specification com- 
pletely changes the implementat ion 
space from that off0 to f6,  in which 
the new implementat ion must be 
found (Figure 8). In  one sense, the 
original derivation history is en- 
tirely irrelevant,  requir ing an en- 
tirely new derivation to be con- 
structed in the new space. In 
another  sense, there should be a 
close analog of  the original path in 
the new space. 

From the beginning of  the new 
path (f6), the t ransformations from 
the original implementat ion space 
can be tr ied sequentially. Each ap- 
plicable t ransformat ion can still be 
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FIGURE 7. Types of delta induced by transformation system model 

legally appl ied (as exemplif ied by 
c e~ and ce2). Transformat ions  that 
no longer  apply (such as c~ s) could 
simply be d r o p p e d  (naive replay), 
leaving the applicability of  their  
successors (c e4) in doubt.  We depar t  
from naive replay by using a more 
sophisticated technique to preserve 
many successor transformations:  I f  
an inapplicable t ransformat ion 
commutes with its successor, we can 
delay applicat ion o f  the inapplica- 
ble one and a t tempt  to preserve its 
successor (note that ce44(ces(fz))= 

f c  = c~6(ce4S(f2)); this allows us to 
propose ce4 ~ when c~ s fails to be pre- 
servable). Since the commutativity 
of  t ransformations depends  on 
their  semantic propert ies,  such 
commutat ion fails only if  there  is a 
true o rde r  dependency  on trans- 
formations. 

We revise a derivat ion history by 
repeatedly  applying either a delay 
or preserve action to each individual 
t ransformat ion it contains. 

Delaying a transformation: We can 
often de te rmine  that a part icular  
t ransformat ion in a derivat ion his- 
tory cannot  be preserved.  We can 
revise the derivat ion history to 
delay its applicat ion as long as pos- 
sible. A primitive for accomplishing 
delay is the notion of  swapping two 
sequential t ransformations,  in 
o rde r  to delay the application of  the 
first one. Given a swap mechanism, 
we may repeatedly  swap a trouble- 
some t ransformat ion down a deri-  
vation history. Delaying the appli-  
cation of  a t ransformat ion as far as 
possible is called banishment.  

Swapping t ransformations often 

requires a generalized kind of  com- 
mutativity. The  effect we desire is 
given a derivat ion history f ragment  
ce2(@(p)), we need to find a new 
f ragment  cei(ce~(p)) = ceg~(ce~(p)), 
such that c~ ~ is known to be preserv- 
able. We can then replace the origi- 
nal f ragment  with the new frag- 
ment,  effecting a unit  delay of  ci by 
changing its locator. We accomplish 
this by comput ing  candidate  Cs and 
testing for equivalence of  the com- 
position of  the original pair  with 
the composit ion of  the swapped 
pair. An example  for tree transfor-  
mations is shown in Figure 9, dem- 
onstrat ing that applicat ion of  the 
distributive law can be delayed past 
application o f  the commutat ive law 
by revising the locators on both, 
without changing the effect. When  
such a swap cannot  be computed,  
then the t ransformat ion has been 
delayed as far as practical, and no 
fur ther  a t tempt  is made  to delay its 
applicat ion fur ther  down the deri-  
vation history. 
Preserving a transformation: 
Given a functionality delta 6, we 
often want to de te rmine  if  a trans- 
format ion c/e from a derivat ion his- 
tory can be preserved.  I f  we can 
find another  pair  of  t ransforma-  
tions 6' and c e' that preserve the ef- 
fect of  6, then we can reuse the ap- 
plication of  ci. This is formalized as 
cf'(a(/~)) = a ' (ce(~)) .  

FIGURE 8. Changing functionality: preservation of path across Implementation 
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This is also practical to compute 
for certain kinds of  transforma- 
tions. In Figure 10, we see that the 
step of  refining a stack-computa- 
tion program into LISP can be pre- 
served by computing 6' =c(6') .  
The revised 6' is computed by ap- 
plying the refinement to the origi- 
nal delta. 

We have so far seen how to revise 
a derivation history when we have 
been told, directly or indirectly, 
which transformations simply can- 
not be kept. Functionality deltas 
provide us with the opportunity to 
directly inspect interactions be- 
tween individual transformations in 
the derivation history and some 
desired functionality change. What 
we attempt to do is to preserve as 
much of  the derivation history as 
possible. The  essential idea is to 
"push" the delta through the deri- 
vation history, from beginning to 
end, either preserving or banishing 
as we go. We scan the original deri- 
vation history from beginning to 
end, checking the delta for inter- 
ference with each transformation. 
When the existing transformation 
interferes with the desired change, 
we simply banish the offending 
transformation; otherwise we can 
preserve that transformation. The 
scan stops when an existing step can 
be neither preserved nor banished; 
the derivation history is truncated 
at the offending transformation. 
The  truncated derivation history is 
compatible with the revised delta. 
All we need to do is actually apply 
the delta and finish the implemen- 
tation, using the transformation 
system itself. A detailed example of  
derivation history revision is pro- 
vided in the Appendix. 

Revising Design Histories 
Different maintenance deltas affect 
different aspects of  the transforma- 
tion system, and consequently re- 
quire different procedures for re- 
vising the design history. Each such 
procedure must determine the 
impact of  the delta on the design 
history and adjust it accordingly. As 
an example, functional deltas affect 
the derivation history portion di- 

rectly. Indirect effects occur as a 
side effect of  modifying the deriva- 
tion history. 

All of  our  design history delta- 
integration methods follow the 
same general sequence: 
Revise: Adjust structures in delta- 

specific fashion; 
Mark: Identify agenda items in the 
design history inconsistent with the 
delta; 
Prune:  Prune away inconsistent 
agenda items and all the forced 
choices dependent  on those already 

FIGURE 9. Swapplng order of two overlapping sequential transformations 

FIGURE 10. Preserving a refinement translates the delta 

COMMUNICATIONS OF THE ACM/April 1992/Vol.35, No,4 8 1  



C A S E  

pruned; and 
Repair: Complete the pruned de- 
sign history, perhaps by using new 
information supplied by a delta. 

As with modifying a derivation his- 
tory, these steps are interleaved in 
practice, for both individual deltas, 
and for the multiple deltas that 
make up a composite delta. 

The revision process usually in- 
spects the design history relative to 
a particular delta, and, while revis- 
ing it, marks those parts (agenda 
items) which conflict with the delta 
as undesirable. How the conflicts 
are detected depends on the type of 
the delta. Many delta types indi- 
rectly cause transformations to be 
eventually banished, revising the 
derivation history portion of the 
design history, and marking the 
agenda items that generated the 
banished transformations. 

Undesirable agenda items are 
then pruned away, leaving an in- 
complete design history. If  the 
pruned agenda item is a forced 
(i.e., only) choice on which some 
other agenda item is dependent, 
then it is only sensible that the de- 
pending agenda item must also be 
pruned. Pruning an agenda item 
leaves its parent incomplete. This 
part of the integration process is 
independent of the type of delta. 
The pruning of agenda items often 
invalidates transformations in the 
derivation history, which must 
eventually be removed. 

Having finished the pruning 
process, the incomplete design his- 
tory must be repaired by processing 
incomplete agenda items. We ac- 
complish this by simply passing the 
incomplete design history to the 
TCL execution engine, which 
chooses and executes incomplete 
agenda items. We must of course 
ensure that pruning a design his- 
tory always leaves it in a legal state 
as far as the TCL execution engine 
is concerned. The execution engine 
records the relation between 
agenda items and their progeny, 
thus filling out the design history. 
In this fashion we avoid the need 
for a special replay mechanism. 

Completion for delta integration 
and completion for initial imple- 
mentation are identical. Repairing 
may cause further revision, mark- 
ing, and pruning. 

Pruning and Repairing the 
Design HiStOry 
The purpose of pruning a design 
history is to remove those parts 
which are either simply invalid or 
no longer serve any purpose rele- 
vant to the final performance speci- 
fication, G6. We assume we have a 
design history in which some 
agenda items have been marked 
undesirable. We must prune away: 

• all portions of the design history 
that are directly marked, 

• every agenda item that depends 
uniquely on some pruned agenda 
item, and 

• agenda items generated as de- 
scendants of those marked. 

What remains after pruning is a 
design history containing incom- 
plete agenda items having alterna- 
tive completions. 

To prune an undesirable agenda 
item, the design history is traversed 
from that item upward until some 
parent agenda is found that pro- 
vides an alternative (OR or 
ACHIEVE nodes). That item is then 
marked as incomplete, and all 
agenda items below that point are 
removed from the design history. 
When pruning a leaf agenda item 
that APPLYs a transformation, we 
additionally mark the transforma- 
tion in the derivation history as 
undesirable; during the plan repair 
process, an eventual banish will 
remove the marked transforma- 
tion, which may eventually cause 
additional pruning. 

In Figure 11, we show a typical 
pruning process. A sequence of ac- 
tivities is numbered: 

1. Mark agenda item Gn undesira- 
ble 

2. Prune the undesirable agenda 
item and its dependents 

3. Mark dependent transforma- 
tions as undesirable 

4. Banish an indirectly dependent 
transformation G7 

5. Mark, as undesirable, the 
agenda item generating the 
transformation 

Some delta-specific marking pro- 
cess first marks G7 as undesirable. 
At the pruning step, traversal 
moves up the design history from 
undesirable G7 to the first parent 
having an alternative Go. That item 
is marked as incomplete, and all of its 
descendents (the outlined region 
containing Glo, G8, G7, and the un- 
shown nodes that APPLY transfor- 
mations c e4, c e5 and ce66) are removed 
from the design history. All the 
transformations under the pruned 
region are also marked as undesira- 
ble. Eventually, but not as part of 
the pruning process for G7, some 
derivation history banishing activ- 
ity, triggered by the need to remove 
c e4, c eS, c e6, will encounter c~7; should 
this transformation itself also need 
banishing, then its immediate par- 
ent (APPLY under G6) will be 
marked undesirable and the prun- 
ing process repeated. 

Repairing the pruned plan con- 
sists of executing actions for incom- 
plete agenda items, perhaps gener- 
ating additional agenda items in the 
process, and recording the new 
items in the design history. Since 
such agenda items can be produced 
by the pruning process in the mid- 
dle of the logical transformational 
implementation process (according 
to the sequencing constraints in the 
design history), to repair a design 
history we must have: 

• out-of-order execution of TCL 
methods and fragments 

• the ability to insert transforma- 
tions in the middle of the deriva- 
tion history 

The execution order for a 
metaprogramming language like 
PADDLE [26] or the tactics lan- 
guage of Goldberg [11] is totally 
determined, and very difficult to 
restart at arbitrary points. This is 
why such metaprograms are re- 
played in their entirety from the 
beginning. Rather than be saddled 
with a purely linear execution 
model for the metaprogram, we 
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designed TCL execution in such a 
way that an agenda-or iented execu- 
tion process is possible. Agenda  
items are produced  by TCL lan- 
guage constructs when encoun- 
tered, and processed in the o rde r  
de te rmined  only by the sequencing 
constraints def ined by PLANs. 

Agenda-oriented execution pro- 
cess chooses any incomplete item 
and executes it (possibly causing the 
addi t ion of  more agenda  items) and 
then marks it complete. We choose 
to process the earliest incomplete 
agenda item, as de te rmined  by the 
order ing  constraints in the design 
history. This per forms those ac- 
tions with the most potential r ipple 
effect on the remainder  of  the de- 
sign history as early as possible. The  
earliest-first heuristic minimizes the 
amount  of  later revision required,  
by doing early actions while the 
design history is as small as possible. 
I t  also spreads damage from invali- 
dated earl ier  decisions to later 
points in the design history before 
we at tempt  to build on top of  them. 

Each agenda  item specifies a 
TCL action taken from some TCL 
method which determines  what 
occurs when the agenda item is exe- 
cuted. Most typical is the execution 
of  a PLAN action, and the most po- 
tentially complicated is the execu- 
tion of  an APPLY action; we will 
discuss these shortly. 

An incomplete agenda item must 
be executed according to its action 
and produce  a satisfactory sub- 
agenda.  Some of  the agenda  item 
types allow only a single way to ob- 
tain satisfactory complet ion (PLAN, 
CALL, REQUIRE), and some allow 
many alternatives (ACHIEVE, 
APPLY, OR). 

For alternative generators,  exe- 
cution generates the next possible 
alternative, based on internal state 
of  the agenda  item, and records it 
in the design history. I f  there  are 
no remaining alternatives, then the 
agenda item is unsatisfiable, and is 
simply pruned,  exposing an even 
higher-level agenda  item that pro- 
vides an alternative. Pruning the 
design history back to an agenda  

F I G U R E  11.  Pruning a design history back to an alternative 

item resets its alternative generator .  

Execution of PLAN agenda items 
occurs in a way similar to expand-  
ing a node in a hierarchical nonlin- 
ear  planning process [8, 13]. The  
design history is augmented  by cre- 
ating new, incomplete agenda  items 
for each element  of  the PLAN. An 
execut ion-order ing relation is 
placed on these newly created 
agenda items according to the or- 
der ing  given by the PLAN action. I t  
is the lack of  o rde r  present  in many 
plans that provides much of  the 
f reedom to reorder  execution of  
actions in the design history. 

Execution of APPLY agenda items 
requires the application of  a trans- 
formation to a state. I f  we had a 
simple l inear execution model,  we 
could simply apply the t ransforma- 
tion to the last state of  the deriva- 
tion history, but  with plan repai r  we 
can have out-of-order  execution. 
The  t ransformat ion might be ap- 
plied to any state in the derivation 
history. 

When choosing agenda  items to 
execute, we want to choose the ear- 
liest to maximize the appearance  of  

any possible downstream effects. 
When  applying a t ransformation,  
we want to apply it to the latest state 
to which it can legitimately apply, 
because we will have to revise the 
derivat ion history from that point 
on, and we wish to minimize the 
effort  to do so. The  information 
necessary to de te rmine  this is pres- 
ent  in the o rder ing  information in 
the design history. 

When  incomplete APPLY agenda  
items occur late enough according 
to the o rder ing  information in the 
design history, the point  of  applica- 
tion turns out  to be the end of  the 
derivation history. This scheme 
thus conveniently subsumes the 
simple l inear execution model. 

An interesting case is shown in 
Figure 12, in which c e3 has been 
marked  as undesirable,  and the 
design history has then been 
p runed  back to G5, which offers the 
alternative c~ 8, shown by the dashed 
arrow. According to the sequencing 
information in the design history, 
this alternative t ransformation 
must be appl ied jus t  pr ior  to the 
earliest sons of  G7 and Gl0 (i.e., it 
should replace the third transfor-  
mation). This is accomplished by 
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FIGURE 12. Repair by inserting a replacement transformation 

treating the new transformation to 
be applied as a functional delta 3fto 
f2 and using a variation of  the A T- 
integration procedure to construct 
a new derivation history. Such a 
new derivation history is shown in 
dotted outlines, growing horizon- 
tally in the figure, with the new 
transformation inserted in the 
middle. 

The revised derivation history 
must have all retained transforma- 
tions revalidated to ensure that they 
continue to serve the purpose for 
which they were originally in- 
tended. This is accomplished by 
checking that each transformation 
continues to play its designated role 
as specified by the design history; 
postconditions of  parent agenda 
items are checked as transforma- 
tions are preserved. An apparent  
preservable transformation which 
fails to achieve a desired effect must 
be banished; this is accomplished by 
marking its parent, which will cause 
a later cycle of  prune and repair. 

Delta-Specific Revise and Mark 
Having sketched how a design his- 
tory is pruned and repaired, we 

now outline revision and marking 
procedures for the common delta 
types. Each such procedure revises 
the design history in a delta-specific 
way, and marks the part of  the de- 
sign history that is no longer rele- 
vant. 

Integration of functional deltas Af 
into a design history is easy because 
plan repair already does most of  
the work. There  is no need to ini- 
tially mark any part of  the design 
history at all. It is only necessary to 
APPLY the functional delta 6f to f0. 
The derivation history revision 
mechanism mentioned earlier will 
propagate the changes into the de- 
sign history appropriately. 

Integration of performance deltas 
A6: Performance deltas change the 
specification of  the desired artifact 
(performance bound deltas 6v are 
simply a special case of  A6, and so 
essentially the same integration 
procedures can be used). We have 
seen that typical specifications are 
often given as mixed specifications 
(f0, Go). Since we have a mechanism 
to handle changes to f0, we limit 

performance deltas to changes of  
Go. Changing Go requires that a dif- 
ferent path through the same imple- 
mentation space (left half of  Fig- 
ure 8) be chosen to an alternative 
implementation fG'. The  choice of  
path through the implementation 
space is controlled by decomposi- 
tion of  the performance goals al- 
lowed by TCL methods in Mlibrary. 
The decomposition o f  the perfor- 
mance goal for the current artifact 
is stored in the structure of  the de- 
sign history. Integration of  A6 re- 
quires that we revise this decompo- 
sition. 

We revise the design history by 
propagating the specific 66 in a top- 
down fashion, paralleling the de- 
sign history construction method by 
goal decomposition. As we walk 
down the design history, at each 
ACHIEVE(G,e) agenda item (see 
Figure 13), we must do the follow- 
ing: 

* Revise the ACHIEVE(G,e) agenda 
item to be ACHIEVE(6a(G),e) 

* Decide if CALLing method i is 
still useful as a means of  decom- 
posing the revised goal 
- - I f  still useful, determine the 

changes induced by 66 and 
propagate those into both 
subplans. 

- - I f  not, prune the non- 
procedurally generated sub- 
plan. 

Determination of  the continued 
utility of  the method mk = 
(Gk, actionk) requires that we 
revalidate the goal decomposition 
for the agenda item. This can often 
be done by simple substitution. The 
revised subgoals must be propa- 
gated into the subplans; propaga- 
tion should be into earlier subplans 
first to ensure that damage caused 
to early plans is propagated to later 
plans by the pruning process, en- 
suring that effort to update such 
later plans is only applied to their 
useful parts. 

I f  we cannot revalidate the goal 
decomposition, then the existing 
plan to implement ACHIEVE(G,e) 
is not valid for the new 
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ACHIEVE(6c(G),e). We force the 
eventual p runing  of  the generated 
plan by marking both the CALL and 
the ACHIEVE(Gx,e') nodes as unde- 
sirable, and terminate the propaga-  
tion of  6c into this subagenda.  An 
eventual p runing  process will 
prune  the plan back up to the re- 
vised ACHIEVE(6c(G),e) node, and 
the repai r  process will a t tempt  to 
find a new replacement.  

Figure 13 shows how this occurs 
for a specific case. We start with an 
original per formance  goal Go of  
O(n ~) with source lines (sloc) less 
than 10 and target  language LISP. 
We want to apply a 6c having two 
parts, Ge, removing constraints, 
and G~, adding  new constraints. 
The  design history shows that the 
original per formance  goal was 
achieved by decomposing the prob- 
lem into an action CALLing a 
known method mk whose postcondi- 
tion ensures an arbi trary complex- 
ity and a specific target  language, 
and then ACHIEVEing non- 
procedural ly  the remaining par t  of  
the original per formance  goal, the 
desired sloc. 

The  design history revision re- 
quires that the new performance  
goal be propaga ted  into the sub- 
agenda items. This requires that 
the former  goal pcomplexity condition 
of  O(n 2) be revised to O(n log n) and 
propagated  into the body of  the 
called method.  This is just  another  
performance delta 6j and is propa-  
gated by similar techniques. Simi- 
larly, a revised per formance  delta 
6~ for sloc is constructed and propa-  
gated. Should there be no way to 
revise the postconditions to match a 
performance delta, then the corre- 
sponding agenda item is marked as 
undesirable.  

D M S  U s a g e  
The  obvious use of  a DMS is the 
construction of  an incremental  
maintenance system. System ana- 
lysts compare  needs against existing 
system specifications, and produce  
maintenance deltas. The  deltas are 
integrated into the existing design 
history for the existing software 
artifact, p roducing  a revised history 

Given Se~ (G O, Ge): / 

/ Ge-~ O(n 2)/k sloc< 10 
Ge, ~ O(n log n) A sloc < 8 

[ I G = - O ( n 2 ) A s I ° c < I O A L I S P  
ACHIEVE(G,e) G" =- O(n log n) A sloc < 8 A LISP 

CALL(i, (~) (~ "~ ?x ~ n 2 ACHIEVE( Gx, e') 
I o-' -= ?x ~ n log n 

ak ] 

I 

Gx = - sloc < 10 

G x~ sloc < 8 
"G =- (s loc< 10, s loc< 8) 

I Gi=- O(?x) 
ACHIEVE(Gj, ej) I $i =- (O(n2),O(n log n)) 

II=IIIUIIIf 13.  Propagating 8a from root to 

and a revised artifact. 
Since the procedures  are insensi- 

tive to whether  the design history is 
complete or  not, one can apply del- 
tas using a DMS to a partially com- 
pleted implementat ion.  This allows 
a DMS to be used dur ing  the initial 
implementat ion phase. The  repair  
process can be s topped after  any 
agenda item is processed, and a 
new delta applied.  Thus  deltas can 
be appl ied  at will. Such a DMS 
would allow us to pe r fo rm transfor-  
mational maintenance relatively 
cheaply and lead toward the goal of  
an Incremental  Evolution lifecycle. 

A DMS can also be used as a 
foundat ion for a reusability system. 
Implemented  components  are 
stored with their  specifications and 
design histories in a library. A 
reuser  chooses a component  whose 
specification is near  his desires; the 
difference is a delta and is appl ied 
to the stored history to help revise 
the component .  

Status: A prototype system that 
takes a derivation history and a 
functional delta, using conditional 
tree t ransformations and theory 
morphisms has been tested. It gen- 

leaves of design history 

era ted  the example  in Append ix  B, 
as well as a number  o f  similar ex- 
amples. Work on an implementa-  
tion of  the design history delta inte- 
grat ion procedures  has started. 

The  other  components  of  a DMS 
are relatively well unders tood,  
making it practical to consider 
building an exper imental  DMS. 
Applicat ion of  a practical DMS is 
still probably several years away, 
because of  the need to build consid- 
erable t ransformational  infrastruc- 
ture, the need to encode consider- 
able implementat ion knowledge, 
and to test the ideas on systems with 
real scale. 

Related Work  
A short  survey of  the state of  soft- 
ware maintenance is provided by 
[21]. A fundamenta l  observation is 
that for conventional maintenance,  
it is difficult to de termine  what 
code is affected by a change. A 
DMS acquires this traceability from 
a design history. 

PDS [9] is a t ransformat ion sys- 
tem that retains derivation histo- 
ries, and rederives components  
dependen t  on changed compo- 
nents. This is a kind of  t ransforma- 
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tional MAKE, in which there is no 
explicit delta to help guide the revi- 
sion process [10]. 

A system for maintaining exist- 
ing software by reverse-engineer-  
ing an existing concrete p rogram 
into an abstract program,  applying 
an explicit functional delta to the 
abstract program,  and reimple- 
ment ing the abstract p rogram is 
described by [24]. An earl ier  view 
of  maintenance with explicit deltas, 
and how those deltas affect naviga- 
tion of  the implementat ion space, is 
provided in [3]. Neither  of  these 
consider the rationale needed to 
achieve desired per formance  prop-  
erties. 

Others  have suggested en- 
hancing the t ransformational  
maintenance process by reusing 
generative design information 
(goal-directed plans) [ 11, 26]. What  
distinguishes our  work is the use of  
target-program-specif ic  design in- 
formation and the use of  formal 
deltas to guide revision o f  this in- 
formation.  The  problem of  con- 
structing a design history is very 
close to that of  planning [1], with 
the difference being primari ly the 
requi rement  to use correctness- 
preserving transformations.  Many 
of  the general  ideas on what parts 
of  a plan need repai r  are summa- 
rized by [17]. Work on plan repair  
and reuse [13] is often limited to 
sets of  facts ra ther  complex struc- 
tures such as programs with indi- 
rectly der ived propert ies,  al though 
the mechanisms bear  considerable 
similarity. 

Conclusions 
We have sketched a DMS based on 
capture and reuse o f  design infor- 
mation from a t ransformational  
implementat ion process. The  DMS 
updates  the specification ("what"), a 
derivation history ("how"), and the 
design history ('~justification") using 
a formal maintenance delta to 
guide the revision process. A sys- 
tem demonst ra t ing  some of  the 
concepts has been built and tried on 
small examples. 

Such a DMS could radically 
change software life cycles by unify- 

ing design and maintenance into a 
process of  integrat ing a stream of  
formal deltas into the design, 
ra ther  than focusing solely on the 
product ion of  code. It is, perhaps,  
possible to translate software imple- 
mented  conventionally into a form 
compatible with DMS by using 
t ransformational  design recovery 
techniques [3, 24]. 

An incremental  system for de- 
sign revision need not be fast, if the 
amount  of  change per  increment  is 
small. This suggests that formal  
software construction methodolo-  
gies may be justifiable solely be- 
cause the design knowledge can be 
formally captured and reused.  This 
in itself may justify their  use even if 
one ignores any other  positive ben- 
efits such as removing ambiguity 
from specifications, raising the 
quality of  implementat ions,  and the 
potential  for automation.  
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